
· 深圳市儿童医院成功部署IBM集成平台与商业智能分析系统
· 英特尔携杭州诚道科技构建智能交通
· 数据挖掘在青岛银行:提升银行交易性能、简化运营和管理
· 百度大脑PK人脑 大数据押高考作文题
培训安排
Python数据挖掘培训安排:
项目名称 |
Python数据挖掘 |
时间-北京 |
2016年1月23-31日/@北京 周六日(共4天) |
时间-远程 |
2016年1月23-31日/@远程 周六日(共4天) |
价格(元) |
全程:4000(现场)/2900(远程) |
优惠 |
1. 参加过论坛其他现场班老学员9折优惠 2. 同一单位三人及以上报名9折优惠 3. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件) 以上优惠不可叠加 |
|
|
现场班福利 |
全套视频资料,咖啡茶歇,论坛币(500个) 【远程班福利同上】 |
课程讲师
常国珍,会计学博士、社会学硕士,毕业于北京大学人口所,目前就读于北大光华管理学院,SAS公司数据挖掘与统计分析课程讲师。曾为德勤管理咨询高级数据挖掘咨询顾问,SAS官方培训资深讲师,2014年SAS软件大赛判卷人,曾以数据挖掘工程师身份就职于亚信科技(中国)有限公司市场部。具有八年的数据挖掘实战经验,主攻分类模型,涉及客户精准营销、信用评估、价值提升、欺诈侦测和流失预警等数据挖掘主题,尤其熟悉银行个人客户精准营销的建模工作。
授课方式
1. 现场授课使用Python和Spss软件进行数据挖掘,多媒体互动,现场答疑。
2. 时间:上午9:00—12:00,下午13:00—16:30,16:30—17:00现场答疑。
3. 现场提供免费午餐,咖啡茶饮。
4. 赠送讲义,数据 ,现场班视频。
授课对象
1)各行业数据分析、数据挖掘从业者
2)金融、电信、零售、医学等各行业业务数据分析人员
3)ZF事业单位大数据及数据挖掘项目人员
4)数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5)对数据挖掘感兴趣的各界人员
授课目标
1、系统掌握数据分析/挖掘的基本理念、方法
2、掌握商业数据分析的分析方式、流程,具有实际开展数据分析/挖掘项目的能力
3、掌握商业数据分析/挖掘报告的展现技能
课程大纲
第一讲 1.2Python数据类型、数据语法、运算符 |
第二讲 2.1 函数、模块、异常与文件处理 2.2 函数与重要Python包 2.3 数据挖掘常用包介绍 |
第三讲 3.1 特征变量选择:主成分和因子等 3.2 样本聚类 3.3 案例1:汽车类型聚类与地域购买偏好分析 |
第四讲 4.1 决策树模型 4.2 模型验证+组合算法 4.3 案例2:电信离网用户预警 |
第五讲 5.1 最近邻域法(KNN)、MBR、样条曲线 5.2 线性回归与岭回归、可实现的Lasso算法 5.3 案例3:婚恋网站被约会可能性预测 案例4:零售业客户价值预测模型 |
第六讲 6.1 逻辑回归;广义线性模型 6.2 支持向量机 6.3 案例5:新闻内容分类 |
第七讲 7.1 文本分析流程概述 7.2 常用字符串函数与正则表达式 7.3 分词与词频统计 7.4 案例6:新闻内容分类 案例7:构造新闻热点词指数 |
第八讲 8.1 社会网络分析 8.2 案例8:电信客户交友圈与流失预警 案例9:电信再入网客户身份指纹识别
|
在线报名
1.在线填写报名信息;
2.给予反馈,确认报名信息;
3.网上缴费;
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09