京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS进行数据转换(Transform)
在有些情况下,原始数据难以满足数据分析的要求,需要对原始数据进行适当的转换。SPSS具体强大的数据转换功能,它不仅可以进行简单的变量转换和重新建立分类变量,还可以进行复杂的统计函数运算以及逻辑函数运算。
在主菜单中点击Transform命令,弹出数据转换子菜单,如图所示。

计算产生变量是根据已存在的变量,经函数计算后,建立新变量或替换原变量值。1 计算产生变量(Compute..)
例如,我们在方差分析中常常要求对百分数和层数描叙的数据作反正弦函数的转换(sin-1SQRT(x))。
ARSIN(SQRT(x))
首先,打开数据文据文件(DATA1-1.SAV),将数据调入工作区。然后,从菜单选择Transform- Compute..命令,弹出计算产生变量对话框,如下图:
Target Variable: 目标变量名指定栏。可以输入新的变量,也可以输入已有的变量。输入变量后,下边的 [Type & Label..]按钮就会被激活,点击它出现变量定义的对话框,可以设置以下变量属性。
Label 栏:
⊙Label 输入标签名。
○Use expression as label: 以数学表达式作为标签。
Type 栏:
⊙Use Expression as label: 数字型变量
○String 字符型变量,Width: 8 字符宽度。
Numeric Expression: 数学表达式输入
使用键盘或利用系统提供的计算面板输入数学表达式。也可以将Functions(函数)框里的函数选入表达式中。系统提供了70多种函数,它包括算术函数,统计函数,分布函数,日期函数,缺失值函数和字符函数。
If…定义条件
⊙Include all cases: 包括所有记录。
○Include if cases satisfies condition: 符合条件的记录。选中此项后,条件输入框激活,在此框中输入
变量的逻辑表达式。
SPSS 算术函数
注:x 可以是变量、常量,也可以是函数。
2 自动重新赋值(Automatic Recode)
有的时候,我们需要重新把数值变量或字符变量按它本身的数值大小转换成为从1开始的顺序整数,并存放在新变量对应的记录中。
首先,打开数据文据文件(DATA3-1.SAV),将数据调入工作区。然后,从菜单选择“Transform- Automatic Recode”命令,弹出连续型变量转换为分类变量对话框,如下图:
操作步骤:
1)从左边数据变量栏里把变量选入到右边的“Variable->New Name”框中。
2)在“New Name:”输入新变量名称后,点击 [Add New Name] 按钮加入到“Variable->New Name”框中。
3)在“Recode Starting from”设置赋值顺序,有以下两种顺序:
⊙Lowest value: 按从小到大顺序,赋值为1开始的顺序整数。
○Highest valus: 按从大到小顺序,赋值为1开始的顺序整数。
4)单击 [OK] 按钮,执行转换。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08