SPSS均值检验(Compare Means)平均数比较
Means过程用于统计分组变量的的基本统计量。这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。Means过程还可以列出方差表和线性检验结果。
[例子]
调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:
暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120
暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112
该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-2所示。或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口
2)启动分析过程
在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。出现对话框如图4-3。
图4-3 Means设置窗口
3)设置分析变量
从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“Independent List”框里,用户可以从左边变量列表里选择一个或多个分组变量。
多个分组变量既可放在一层,又可放在不同层。利用图中的“Previous”和“Next”按钮可以在不同层之间切换。
4)选择输出统计量
单击“Options”按钮,将打开如下图所示的对话框。在“Options”对话框中,“Statistics”框中列出了SPSS可求的统计量。其中各项的意义分别为:
Mean 均值。 Number of Cases 观测量数目 Standard Deviation 标准差 Median 中位数。 Grouped Median 分组的中位数 Std. Error of Mean 均值的标准误 Sum 观测值之和 Minimum 最小值 Maximum 最大值 |
Range 极差 First 第一个观测值 Last 最后一个观测值 Variance 方差 Kurtosis 峰度 Std. Error of Kurtosis 峰度的标准误 Skewness 偏度 Std. Error of Skewness 偏度的标准误 |
其中,“Mean”、“Number of Cases”和“Standard Deviation”项为系统的默认选项。
在“Cell”框中列出了已选中的统计量。从“Statistics”框中选择要生成的统计量。
“Statistics for First Layer”框中列出了第一层分组的另外两个统计量。
“Anova table and eta”选中将给出方差分析表和eta统计量。方差分析表的前提条件是按照分组变量分组后各组
的均值都相等。eta统计量为分组变量与生成统计量的变量关系紧密程度的度量。
“Test for Iinearity”选中给出分析变量和分组变量的线性关系参数,其前提条件为:分组变量和分析变量线性相关。
本例子选定统计量为“Mean”、“Number of Cases”、“Standard Deviation”3个统计变量。选中复选项“Anova table and eta”。
5)提交执行
提交各选项,在本例中我们不做其他选择,保持缺省值。在图4-3中点击“OK”按钮,SPSS输出结果将显示在输出浏览器中。
6) 结果与分析
表4-1 结果报告(Report)
表4-2 方差分析表 ANOVA Table
结果分析:
表4-1结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.38,标准差15.95,方差254.42; 暴雨后有13个样本,平均数104.46,标准差15.11,方差228.269;总体26个样本,平均数113.42,标准差17.75,方差315.214。
表4-2方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。第二列为平方和,其大小说明了各方差来源作用的大小。第三列为自由度。第四列为均方,即平方和除以自由度。第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03