
SPSS均值检验(Compare Means)平均数比较
Means过程用于统计分组变量的的基本统计量。这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。Means过程还可以列出方差表和线性检验结果。
[例子]
调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:
暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120
暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112
该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-2所示。或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口
2)启动分析过程
在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。出现对话框如图4-3。
图4-3 Means设置窗口
3)设置分析变量
从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“Independent List”框里,用户可以从左边变量列表里选择一个或多个分组变量。
多个分组变量既可放在一层,又可放在不同层。利用图中的“Previous”和“Next”按钮可以在不同层之间切换。
4)选择输出统计量
单击“Options”按钮,将打开如下图所示的对话框。在“Options”对话框中,“Statistics”框中列出了SPSS可求的统计量。其中各项的意义分别为:
Mean 均值。 Number of Cases 观测量数目 Standard Deviation 标准差 Median 中位数。 Grouped Median 分组的中位数 Std. Error of Mean 均值的标准误 Sum 观测值之和 Minimum 最小值 Maximum 最大值 |
Range 极差 First 第一个观测值 Last 最后一个观测值 Variance 方差 Kurtosis 峰度 Std. Error of Kurtosis 峰度的标准误 Skewness 偏度 Std. Error of Skewness 偏度的标准误 |
其中,“Mean”、“Number of Cases”和“Standard Deviation”项为系统的默认选项。
在“Cell”框中列出了已选中的统计量。从“Statistics”框中选择要生成的统计量。
“Statistics for First Layer”框中列出了第一层分组的另外两个统计量。
“Anova table and eta”选中将给出方差分析表和eta统计量。方差分析表的前提条件是按照分组变量分组后各组
的均值都相等。eta统计量为分组变量与生成统计量的变量关系紧密程度的度量。
“Test for Iinearity”选中给出分析变量和分组变量的线性关系参数,其前提条件为:分组变量和分析变量线性相关。
本例子选定统计量为“Mean”、“Number of Cases”、“Standard Deviation”3个统计变量。选中复选项“Anova table and eta”。
5)提交执行
提交各选项,在本例中我们不做其他选择,保持缺省值。在图4-3中点击“OK”按钮,SPSS输出结果将显示在输出浏览器中。
6) 结果与分析
表4-1 结果报告(Report)
表4-2 方差分析表 ANOVA Table
结果分析:
表4-1结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.38,标准差15.95,方差254.42; 暴雨后有13个样本,平均数104.46,标准差15.11,方差228.269;总体26个样本,平均数113.42,标准差17.75,方差315.214。
表4-2方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。第二列为平方和,其大小说明了各方差来源作用的大小。第三列为自由度。第四列为均方,即平方和除以自由度。第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15