
SPSS均值检验(Compare Means)平均数比较
Means过程用于统计分组变量的的基本统计量。这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。Means过程还可以列出方差表和线性检验结果。
[例子]
调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:
暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120
暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112
该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-2所示。或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口
2)启动分析过程
在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。出现对话框如图4-3。
图4-3 Means设置窗口
3)设置分析变量
从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“Independent List”框里,用户可以从左边变量列表里选择一个或多个分组变量。
多个分组变量既可放在一层,又可放在不同层。利用图中的“Previous”和“Next”按钮可以在不同层之间切换。
4)选择输出统计量
单击“Options”按钮,将打开如下图所示的对话框。在“Options”对话框中,“Statistics”框中列出了SPSS可求的统计量。其中各项的意义分别为:
Mean 均值。 Number of Cases 观测量数目 Standard Deviation 标准差 Median 中位数。 Grouped Median 分组的中位数 Std. Error of Mean 均值的标准误 Sum 观测值之和 Minimum 最小值 Maximum 最大值 |
Range 极差 First 第一个观测值 Last 最后一个观测值 Variance 方差 Kurtosis 峰度 Std. Error of Kurtosis 峰度的标准误 Skewness 偏度 Std. Error of Skewness 偏度的标准误 |
其中,“Mean”、“Number of Cases”和“Standard Deviation”项为系统的默认选项。
在“Cell”框中列出了已选中的统计量。从“Statistics”框中选择要生成的统计量。
“Statistics for First Layer”框中列出了第一层分组的另外两个统计量。
“Anova table and eta”选中将给出方差分析表和eta统计量。方差分析表的前提条件是按照分组变量分组后各组
的均值都相等。eta统计量为分组变量与生成统计量的变量关系紧密程度的度量。
“Test for Iinearity”选中给出分析变量和分组变量的线性关系参数,其前提条件为:分组变量和分析变量线性相关。
本例子选定统计量为“Mean”、“Number of Cases”、“Standard Deviation”3个统计变量。选中复选项“Anova table and eta”。
5)提交执行
提交各选项,在本例中我们不做其他选择,保持缺省值。在图4-3中点击“OK”按钮,SPSS输出结果将显示在输出浏览器中。
6) 结果与分析
表4-1 结果报告(Report)
表4-2 方差分析表 ANOVA Table
结果分析:
表4-1结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.38,标准差15.95,方差254.42; 暴雨后有13个样本,平均数104.46,标准差15.11,方差228.269;总体26个样本,平均数113.42,标准差17.75,方差315.214。
表4-2方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。第二列为平方和,其大小说明了各方差来源作用的大小。第三列为自由度。第四列为均方,即平方和除以自由度。第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18