
如何用SPSS和Clementine处理缺失值、离群值、极值
一、什么是预处理、预分析?
高质量数据是数据分析的前提和分析结论可靠性的保障。尽管在获取数据源时数据分析师格外谨慎,耗费大量的时间,但数据质量仍然需持续关注。不管是一手还是二手数据源,总是会存在一些质量问题。同时,为了满足数据分析、挖掘的实际需要,对噪声数据如何处理,是丢弃还是补充,或者重新计算新的数据变量,这些不是随意决定的,这就是数据预处理的一个过程,是在数据分析、挖掘开始前对数据源的审核和判断,是数据分析必不可少的一项。本文暂只简单讨论一下缺失值、异常值的处理。
二、如何发现数据质量问题,例如,如何发现缺失值?
1、SPSS是如何做到的?
(1)系统缺失值、空白值
每一个变量均有可能出现系统缺失或者空白,当数据量巨大时我们根本无法用眼睛看出是否有缺失,最明智的做法是把这项任务交给数据分析工具,比如Excel,可通过数据有效性、筛选、查找、计数等功能去实现,如果是SPSS数据源,可以通过描述统计之“频率”项来实现。
上图,五个变量中,家庭人均收入有效样本94,有6个无效样本,在spss数据区域显示为空白值。其他变量均没有缺失,对于这6个缺失值是留是踢需要谨慎。
(2)变量取值分布
这一项不容忽视,一般由于输入错误、数据本身或者其他原因造成。这里分分类变量和数值变量进行检查。
分类变量取值分布检查:
描述统计之“频率”项,可以对变量以及变量取值进行频次统计汇总,因此,此处仍然采用“频率”项。
上图,我们已经确认是否献血样本全部有效,但是不代表这个变量没有其他噪声。通过此变量取值分布的考察,我们可以发现是否献血有4个水平,分别为“0”“1”“No”“Yes”,但实际上,该变量的取值至于两个水平,“No”“Yes”,其余两个取值是错误操作导致的,这是系统缺失值,可以通过重新赋值进行处理。
数值变量取值分布检查:
数值变量取值分布不宜采用“频次”的统计,一般可通过直方图、含有正态检验的直方图来实现。
上图,数值变量的直方图,可以清楚的看到其分布情况。可以初步判断存在异常值。
(3)离群值、极值
在SPSS中可以通过“箱图”直观的看到异常值,探索分析项或者箱图功能可实现。
上图,为spss探索分析结果,还可以设置分组变量。可以直观的发现,家庭人均收入存在极值,编号为66,可以快速查找定位。
2、Clementine是怎么做到的?
Data Audit,数据审核节点示例:以下数据流看图不解释。
首先,建立以上数据流。最后一个为“数据审核”节点,右键选择并打开编辑:
上图,为clementine变量诊断结果,非常直观,图文并茂,而且一张图几乎说明了数据源各种质量问题。是否无偿献血,取值水平有4个,家庭人均收入最大值有异常,且明确显示有6个无效值。其他变量正常。
上图,是clementine变量诊断结果中的另外一张图表,我们可以发现家庭人均收入有一枚极值,六枚无效值。通过上述诊断,数据质量问题一目了然。
三、如何处理缺失值、离群值、极值?
1、SPSS实现方法
上图,为spss变量转换菜单下的重新编码为相同变量选项卡。可以轻松实现变量重新赋值。主要实现方法:重新编码为相同/不同变量、计算变量、缺失值分析模块,此处略,后续文章会涉及。
2、Clementine实现方法
(1)是否无偿献血 重新分类
我们已经清楚的知道,是否无偿献血变量在取值分布上存在问题。在clementine,需要用Reclassify节点进行重新分类,在变量诊断的第一种表格上选中是否无偿献血变量,点击左上角“生成”按钮,生成一个Reclassify节点。打开该节点,如上图所示,即可完成重新分类。
(2)无效值、空白值的处理
家庭人均收入变量存在6个无效值,我们建议保留这6个样本,希望通过决策树算法进行针对性的预测,从而为这6个无效值进行赋值。如上图所示进行操作。然后,选中该变量,点击左上角“生成”按钮,自动生成一个缺失值插补超级节点。
(3)离群值、极值的处理
家庭收入变量还存在一枚极值,对于该极值,我们采取剔除丢弃处理,在clementine变量诊断表格中,如上图操作,点击生成按钮,自动生成一个离群值和极值超级节点。
(4)以下为clementine的处理结果
我们将自动生成的两个超级节点,连接在数据流末端,再次进行数据审核,结果如上图所示,此时,我们可以看到,上述几个问题已经达到合理地解决。最终我们剔除了一个极值,对其他质量问题采取保守态度进行相应的处理。
上图,为整个过程的数据流图示。
四、总结
1、通过SPSS描述统计的相关过程,可以实现数据质量的探索分析并进行相应的预处理。
2、通过Clementine的Type节点、Filler节点、Reclassify节点、Data Audit等节点可以实现数据质量的探索,而且比SPSS更直观,更快捷。
3、相比而言,clementine在数据分析预处理方面更加优秀,结果可视化程度较高,直观易懂,而且处理流程简短精悍,虽然通过spss或者excel也可以完成这些工作,但我想,如果能合理选择有效驾驭,clementine是一个不错的选择,这不是炫耀或者奢侈,更效率更效果的工作才是最终目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07