京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用SPSS和Clementine处理缺失值、离群值、极值
一、什么是预处理、预分析?
高质量数据是数据分析的前提和分析结论可靠性的保障。尽管在获取数据源时数据分析师格外谨慎,耗费大量的时间,但数据质量仍然需持续关注。不管是一手还是二手数据源,总是会存在一些质量问题。同时,为了满足数据分析、挖掘的实际需要,对噪声数据如何处理,是丢弃还是补充,或者重新计算新的数据变量,这些不是随意决定的,这就是数据预处理的一个过程,是在数据分析、挖掘开始前对数据源的审核和判断,是数据分析必不可少的一项。本文暂只简单讨论一下缺失值、异常值的处理。
二、如何发现数据质量问题,例如,如何发现缺失值?
1、SPSS是如何做到的?
(1)系统缺失值、空白值
每一个变量均有可能出现系统缺失或者空白,当数据量巨大时我们根本无法用眼睛看出是否有缺失,最明智的做法是把这项任务交给数据分析工具,比如Excel,可通过数据有效性、筛选、查找、计数等功能去实现,如果是SPSS数据源,可以通过描述统计之“频率”项来实现。
上图,五个变量中,家庭人均收入有效样本94,有6个无效样本,在spss数据区域显示为空白值。其他变量均没有缺失,对于这6个缺失值是留是踢需要谨慎。
(2)变量取值分布
这一项不容忽视,一般由于输入错误、数据本身或者其他原因造成。这里分分类变量和数值变量进行检查。
分类变量取值分布检查:
描述统计之“频率”项,可以对变量以及变量取值进行频次统计汇总,因此,此处仍然采用“频率”项。
上图,我们已经确认是否献血样本全部有效,但是不代表这个变量没有其他噪声。通过此变量取值分布的考察,我们可以发现是否献血有4个水平,分别为“0”“1”“No”“Yes”,但实际上,该变量的取值至于两个水平,“No”“Yes”,其余两个取值是错误操作导致的,这是系统缺失值,可以通过重新赋值进行处理。
数值变量取值分布检查:
数值变量取值分布不宜采用“频次”的统计,一般可通过直方图、含有正态检验的直方图来实现。
上图,数值变量的直方图,可以清楚的看到其分布情况。可以初步判断存在异常值。
(3)离群值、极值
在SPSS中可以通过“箱图”直观的看到异常值,探索分析项或者箱图功能可实现。
上图,为spss探索分析结果,还可以设置分组变量。可以直观的发现,家庭人均收入存在极值,编号为66,可以快速查找定位。
2、Clementine是怎么做到的?
Data Audit,数据审核节点示例:以下数据流看图不解释。
首先,建立以上数据流。最后一个为“数据审核”节点,右键选择并打开编辑:
上图,为clementine变量诊断结果,非常直观,图文并茂,而且一张图几乎说明了数据源各种质量问题。是否无偿献血,取值水平有4个,家庭人均收入最大值有异常,且明确显示有6个无效值。其他变量正常。
上图,是clementine变量诊断结果中的另外一张图表,我们可以发现家庭人均收入有一枚极值,六枚无效值。通过上述诊断,数据质量问题一目了然。
三、如何处理缺失值、离群值、极值?
1、SPSS实现方法
上图,为spss变量转换菜单下的重新编码为相同变量选项卡。可以轻松实现变量重新赋值。主要实现方法:重新编码为相同/不同变量、计算变量、缺失值分析模块,此处略,后续文章会涉及。
2、Clementine实现方法
(1)是否无偿献血 重新分类
我们已经清楚的知道,是否无偿献血变量在取值分布上存在问题。在clementine,需要用Reclassify节点进行重新分类,在变量诊断的第一种表格上选中是否无偿献血变量,点击左上角“生成”按钮,生成一个Reclassify节点。打开该节点,如上图所示,即可完成重新分类。
(2)无效值、空白值的处理
家庭人均收入变量存在6个无效值,我们建议保留这6个样本,希望通过决策树算法进行针对性的预测,从而为这6个无效值进行赋值。如上图所示进行操作。然后,选中该变量,点击左上角“生成”按钮,自动生成一个缺失值插补超级节点。
(3)离群值、极值的处理
家庭收入变量还存在一枚极值,对于该极值,我们采取剔除丢弃处理,在clementine变量诊断表格中,如上图操作,点击生成按钮,自动生成一个离群值和极值超级节点。
(4)以下为clementine的处理结果
我们将自动生成的两个超级节点,连接在数据流末端,再次进行数据审核,结果如上图所示,此时,我们可以看到,上述几个问题已经达到合理地解决。最终我们剔除了一个极值,对其他质量问题采取保守态度进行相应的处理。
上图,为整个过程的数据流图示。
四、总结
1、通过SPSS描述统计的相关过程,可以实现数据质量的探索分析并进行相应的预处理。
2、通过Clementine的Type节点、Filler节点、Reclassify节点、Data Audit等节点可以实现数据质量的探索,而且比SPSS更直观,更快捷。
3、相比而言,clementine在数据分析预处理方面更加优秀,结果可视化程度较高,直观易懂,而且处理流程简短精悍,虽然通过spss或者excel也可以完成这些工作,但我想,如果能合理选择有效驾驭,clementine是一个不错的选择,这不是炫耀或者奢侈,更效率更效果的工作才是最终目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07