京公网安备 11010802034615号
经营许可证编号:京B2-20210330
《数据分析专项练习题库》
《CDA数据分析认证考试模拟题库》
《企业数据分析面试题库》
CDA LEVEL Ⅱ_模拟题:
1、答案(D)
在使用历史数据构造训练集(Train)集、验证(Validation)集和检验(Test)时,以下哪个样本量分配方案比较适合?
A.训练50%,验证0%,检验50%
B.训练100%,验证0%,检验0%
C.训练0%,验证100%,检验0%
D.训练60%,验证30%,检验10%
2、答案(A)
一个累积提升度曲线,当深度(Depth)等于0.1时,提升度为(Lift)为3.14,以下哪个解释正确?
A.根据模型预测,从最高概率到最低概率排序后,最高的前10%中发生事件的数量比随机抽样的响应率高3.14
B.选预测响应概率大于10%的样本,其发生事件的数量比随机抽样的响应率高3.14
C.根据模型预测,从最高概率到最低概率排序后,最高的前10%中预测的精确度比随机抽样高3.14
D.选预测响应概率大于10%的样本,其预测的精确度比随机抽样高3.14
3、答案(C)
在使用历史数据构造训练(Train)集、验证(Validation)集和检验(Test)集时,训练数据集的作用在于
A.用于对模型的效果进行无偏的评估
B.用于比较不同模型的预测准确度
C.用于构造预测模型
D.用于选择模型
4、答案(D)
在对历史数据集进行分区之前进行数据清洗(缺失值填补等)的缺点是什么?
A.增加了填补缺失值的时间
B.加大了处理的难度
D.无法对不同数据清理的方法进行比较,以选择最优方法
5、答案(C)
A.运用验证数据集中变量的统计量对训练集中的变量进行数据清洗
B. 运用验证数据集中变量的统计量对验证集中的变量进行数据清洗
C. 运用训练数据集中变量的统计量对验证集中的变量进行数据清洗
D.以上均不对
6、答案(B)
当一个连续变量的缺失值占比在85%左右时,以下哪种方式最合理
A.直接使用该变量,不填补缺失值
B.根据是否缺失,生成指示变量,仅使用指示变量作为解释变量
C.使用多重查补的方法进行缺失值填补
D.使用中位数进行缺失值填补
7、答案(B)
构造二分类模型时,在变量粗筛阶段,以下哪个方法最适合对分类变量进行粗筛
A.相关系数
B.卡方检验
C.方差分析
D.T检验
8、答案(A)
以下哪个方法可以剔除多变量情况下的离群观测
A.变量中心标准化后的快速聚类法
B.变量取百分位秩之后的快速聚类法
C.变量取最大最小秩化后的快速聚类法
D.变量取Turkey转换后的快速聚类法
9、答案(C)
以下哪种变量筛选方法需要同时设置进出模型的变量显著度阀值
A .向前逐步法
B. 向后逐步法
C. 逐步法
D. 全子集法
10、答案(A)
A.R方
B.调整R方
C.AIC
D.BIC
11、[答案B.]
将复杂的地址简化成北、中、南、东四区,是在进行?
A. 数据正规化(Normalization) B. 数据一般化(Generalization) C. 数据离散化(Discretization) D. 数据整合(Integration)
12、【答案(A)】
当类神经网络无隐藏层,输出层个数只有一个的时候,倒传递神经网络会变形成为?
A. 罗吉斯回归 B. 线性回归 C. 贝氏网络 D. 时间序列
13、[答案B.]
请问Apriori算法是用何者做项目集(Itemset)的筛选 ?
A. 最小信赖度(Minimum Confidence)
B. 最小支持度(Minimum Support)
C. 交易编号(Transaction ID)
D. 购买数量
14、[答案B.]
有一条关联规则为A → B,此规则的信心水平(confidence)为60%,则代表:
A. 买B商品的顾客中,有60%的顾客会同时购买A
B. 买A商品的顾客中,有60%的顾客会同时购买B
C. 同时购买A,B两商品的顾客,占所有顾客的60%
D. 两商品A,B在交易数据库中同时被购买的机率为60%
15、【答案(B)】
下表为一交易数据库,请问A → C 的支持度(Support)为:
A. 75% B. 50% C.100% D. 66.6%
|
TID |
Items Bought |
|
1 |
A,B,C |
|
2 |
A,C |
|
3 |
A,D |
|
4 |
B,E,F |
16、【答案(D)】
下表为一交易数据库,请问A → C 的信赖度(Confidence)为:
A. 75% B. 50% C.100% D. 66.6%
|
TID |
Items Bought |
|
1 |
A,B,C |
|
2 |
A,C |
|
3 |
A,D |
|
4 |
B,E,F |
17、[答案D.]
倒传递类神经网络的训练顺序为何?( A:调整权重; B:计算误差值; C:利用随机的权重产生输出的结果)
A. BCA B. CAB C. BAC D. CBA
18、[答案C.]
在类神经网络中计算误差值的目的为何?
A. 调整隐藏层个数
B. 调整输入值
C. 调整权重(Weight)
D. 调整真实值
19、[答案A.]
以下何者为Apriori算法所探勘出来的结果?
A. 买计算机同时会购买相关软件
B. 买打印机后过一个月会买墨水夹
C. 买计算机所获得的利益
D. 以上皆非
20、[答案D.]
如何利用「体重」以简单贝式分类(Naive Bayes)预测「性别」?
A. 选取另一条件属性
B. 无法预测
C. 将体重正规化为0~1之间
D. 将体重离散化
21、[答案B.]
Naive Bayes是属于数据挖掘中的什么方法?
A. 分群 B. 分类 C. 时间序列 D. 关联规则
22、[答案B.]
简单贝式分类(Naive Bayes)可以用来预测何种数据型态?
A. 数值 B. 类别 C. 时间 D. 以上皆是
23、[答案B.]
如何以类神经网络仿真罗吉斯回归(Logistic Regression)?
A. 输入层节点个数设定为3
B. 隐藏层节点个数设定为0
C. 输出层节点个数设定为3
D. 隐藏层节点个数设定为1
24、[答案B.]
请问以下何者属于时间序列的问题?
A. 信用卡发卡银行侦测潜在的卡奴
B. 基金经理人针对个股做出未来价格预测
C. 电信公司将人户区分为数个群体
D. 以上皆是
25、[答案D.]
小王是一个股市投资人,手上持有某公司股票,且已知该股过去历史数据如下表所示,今天为预测2/6的股价而计算该股3日移动平均,请问最近的3日移动平均值为多少?
|
日期 |
股价 |
|
2/1 |
10 |
|
2/2 |
12 |
|
2/3 |
13 |
|
2/4 |
16 |
|
2/5 |
19 |
A. 11 B. 13 C. 14 D. 16
26、[答案C.]
下列哪种分类算法的训练结果最难以被解释?
A. Naive Bayes
B. Logistic Regression
C. Neural Network
D. Decision Tree
27、[答案B.]
数据遗缺(Null Value)处理方法可分为人工填补法及自动填补法,下列哪种自动填补法可得到较准确的结果?
A. 填入一个通用的常数值,例如填入"未知/Unknown"
B. 把填遗缺值的问题当作是分类或预测的问题
C. 填入该属性的整体平均值
D. 填入该属性的整体中位数
1、(AB)
对于决策类模型、以下哪些统计量用于评价最合适?
A.错分类率
B.利润
C.ROC指标
D.SBC
2、(BD)
对于估计类模型、以下哪些统计量用于评价最合适?
A.错分类率
B.极大似然数
C.ROC统计量
D.SBC
3、(AB)
以下哪个变量转换不会改变变量原有的分布形式
A.中心标准化
B.极差标准化
C.TURKEY打分
D.百分位秩
4、(AB)
连续变量转换时,选取百分位秩而不选用最大最小秩的原因
A.避免模型在使用时,值域发生明显变化
B.避免输入变量值域变化对模型预测效果的影响
C.避免输入变量的异常值影响
D.是转换后的变量更接近正态分布
5、(BC)
构造二分类模型时,在变量粗筛阶段,以下哪两个方法最适合对连续变量进行粗筛
A.皮尔森(Pearson)相关系数
立刻扫码
看更多数据分析师认证试题
——学数据分析技能一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到社会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ + Level Ⅱ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
CDA Level II >了解更多<
▷ 报考条件:获得CDA Level Ⅰ认证证书;
▷ 考试时间:随报随考。
CDA Level III >了解更多<
▷ 报考条件:获得CDA Level Ⅱ认证证书;
▷ 考试时间:一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15