京公网安备 11010802034615号
经营许可证编号:京B2-20210330
车联网的大数据之囧_数据分析师培训
在第五期《车联wang谈》中,我们谈到了车联网大数据在“车端”的囧态。接下来,咱们继续聊聊“道路端”和“人端”的大数据。
“道路端”的大数据,最主要的应用主要是静态的地理信息数据和动态的实时交通信息。车音网CEO王力劭(以下简称老王)在第二期《车联wang谈》中也介绍过,这也是未来无人驾驶技术的一个重要技术依赖。
静态地理信息数据,就是俗称的“导航地图”和“兴趣点”。目前,除了官方测绘部门,国内主要的正版导航地图服务提供商有高德、四维图新、易图通等,他们都具有测绘资质,能够生成各类地图。当然,各大型互联网公司如阿里、腾讯、百度、360等也开始以注资、合作的方式,染指各类地图服务提供商。顺便说一句,地图测绘和应用都涉及到国家安全问题。因此,国家通过“测绘许可证”和“应用许可证”来进行管控。“兴趣点”是另一类地理信息,主要关注的是某个地理位置周边所提供的服务。导航地图可以明确标定一个具体的位置,而兴趣点则关心这个位置及其周边位置如何满足用户的需求。比如,大众点评就是一个典型的兴趣点应用,当我们导航到“朝内81号”,它就可以给我们提供周边“快餐店”、“旅店”等服务信息。静态的地理信息数据,数据量虽然大,实际上算不上我们所谓的“大数据”。因为其静态性,我们无法通过数据在时空变换的过程中得出具体的规律。我们所要解决的问题,只是地图位置以及兴趣点的更新速度要能够跟得上时代的变化——要避免当新路都建成使用了,地图还只“知道”老路;不要饭店都换老板改名称了,兴趣点却没有变化。所以,未来我们还是应以大视野思维来打造车联网产业生态系统,要把地理信息大数据与移动互联的地理信息整合起来。而这需要建立整个产业生态,形成“数据+技术+服务”一体化车联网地理信息服务系统,整合数据获取、处理、分析、应用、服务,为用户提供实时动态的服务。
动态交通信息主要是通过摄像头、埋设在路口的感应线圈以及加装在汽车之上的定位和通信设备进行车辆位置的实时监控。监控目标有两种,一种是关注汽车个体的运动轨迹,主要用于安全和管理。比如出租汽车的防盗监控设备,以及国家和部分企业通过监控平台实施的运营车辆管理。这部分,也算不上是具有分析推导价值的大数据。另一种是关注某个区域的实时交通状况及变化趋势,这个可就是有用的大数据了。
国外一些实时交通移动APP软件例如WAZE就具有众筹式的动态交通大数据采集和智能交通信息分析引导功能。当大量车主安装并在驾驶时开启这个应用,每个安装者都可以把自己在当前路段的移动速度、位置灯信息匿名发送到后台。后台将这类数据大量采集后,通过算法就可以知道各个路段的车速快慢、车辆拥挤程度以及未来交通变化趋势。
在我国,实时交通大数据却有着它的囧境,根本原因是数据采集依旧困难。路口感应线圈、摄像头的建设都需要大量的资金,而如果架设的范围不够广,采集的数据有限,那么大数据推导过程就会有严重偏差。在汽车上安装实时定位和通信装置是最好的办法,比如象国外的WAZE软件一样,而真实国情是我们并没有习惯去“在路上通过帮助别人来帮助自己”,连开车大家都恨不得加塞儿比车技,所以这种众筹式的交通互助应用在我国难以推行开。路况电台,是我国一个类似WAZE的应用,但是实际上安装和使用量还远达不到WAZE的水平。目前,北京等大城市,交管部门基本上还是靠出租车上的安防设备所自带的定位通信信息进行采集,而这种数据就具有严重的局限性。除了量少以外,出租司机的活动范围也基本集中在城市的某些繁华的“热区”,这种具有区域不均匀特性的局限性数据显然不是能够用于推导规律的普适性大数据。
除了数据采集方面的问题,目前的动态寻路算法对于复杂实时路况大数据还难以做到高可用的预测性。举个简单的例子,根据某个区域“二环堵但三环通”的状态,实时导航系统会让我放弃二环而绕道三环。老王费了九牛二虎之力花了20分钟通过连接线绕道三环,也许此时三环堵,二环却开始通畅了。实时导航系统也许会无耻地要求你原路再返回二环去……生活瞬间变得不美好了。另外,当交通系统超负荷运转时,大数据也帮不了我们什么了。由于我国各个城市的经济发展不平衡,所以人们更愿意在大城市生活、打拼,结果,就是我们经常听到的大城市的负荷严重超标,这其中包括交通容量超负荷。生活中最常遇到的经验是,每到上下班高峰时期,从智能交通软件商看,老王回家的所有道路都是“一片红”,系统规划给你的路线,基本意思是“您随便走哪儿都行”。因为,您走哪儿其实都不行。
所以,道路侧的大数据也面临应用囧境啊。毕竟,车联网的应用关键是实时提取路况和车辆的动态信息。只有充分搜集了动态信息,才能做到车辆监管、出行路线建议以及交通流量预测等综合服务。显然,目前道路信息采集的不足给用户带来了很多不便,这也是为什么大多汽车信息服务提供的大多是出行导航、通信、娱乐等基本服务,或者紧急情况救援等特殊服务,而人们最需要的交通出行建议服务却不能有效提供。
最后,咱们来谈车联网大数据在“人”这一侧的应用状况。一个有意义的设想是:当人的驾驶习惯以及车辆路径能够被记录下来,那么,汽车制造者、维保者以及保险机构就能够针对这些数据去给这个驾驶员进行行为数据“画像”。然后,通过大量数据分析,就可以精确做到车辆改进、维保策略制定以及对该驾驶者进行保险价格评估。通过对重大数据的挖掘,用户和车企及相关机构的关系会进一步的透明化和智能化。说到挖掘,问题自然而然就来了……别瞎联想,老王说的问题不是“挖掘技术哪家强”,而是,为何用户允许你去挖掘他的数据?
最近,市面上出现了大量的OBD(On-Board Diagnostics,车载诊断装置)形态产品,就是专门用于用户驾驶数据收集的终端。OBD,就是一个小盒子,可以插在汽车中控台的一个标准诊断口上,然后从诊断口获取源源不断的汽车运行数据。比如发动机数据、空调数据、加速刹车以及设备状态等,这些数据可以通过蓝牙或无线和手机上的APP直接沟通。有些OBD产品会内置移动网络,可以直接把数据送到互联网后台。市面上的这些产品被冠以各种名字,比如“路宝盒子”、“iVoka Mini X”、“Golo”等,产品设计者的目的是将OBD作为一个能够“讨好”用户的产品,给用户一些实用的功能从而让用户用起来。比如,汽车非法移动时的自动报警、安全区域边界、驾驶行为评比社交等。为了这些功能,商家除了向用户收取产品的一次性销售费用,还要用户每年支付一定的通信费用。然而,用户是否真的对这种服务感兴趣?除了发烧友,有多少用户真的会使用这种服务?
OBD的规模化使用,确实可以产生大量极为可贵的驾驶行为大数据,甚至每个个体的数据汇总后,还能够对公共交通产生重大影响,但如何能够让大量用户安装,却是一个很难破解的命题。一个产品的存在需要有三个要素,一是用户要觉得它有价值,二是它要能够为生产者带来收益(可能是现金收益,也可能是从其他地方交叉补贴后带来的价值延长收益,或者是一个形成好名声所产生的品牌关联收益等),三是该产品推广应用的代价。显然,OBD产品满足第二条特性,但是第一条特性的满足度相对不足,所以第三点特性——推广起来的代价也就非常高。达不到大量的覆盖和激活,这个大数据的应用也将面临很大的囧境。老王预测,随着时间的推移,市场需求的积累,各个汽车厂都会脱离OBD外接模块模式(不是删除OBD接口)。他们会主动去开放一些汽车运行数据,并且会分级提供给授权的开发商进行“只读”使用,或者提供给相对封闭、安全的由汽车自有的APP进行使用。OBD设备,目前看来应当是一个过渡产品,即使未来有一天能够覆盖大量用户,但由于各个OBD厂商的平台不统一,缺乏开放的平台协议,驾驶行为数据库不能实现互通。所以这种大数据也具有很大的割裂性,如果要到达可用的那一天,还需要经历相当长的时间。另外,所有这一切,完全是在忽略用户对隐私的警觉性以及汽车核心数据安全因素上进行的理想双胎假设。
所以,从推论来看,车联网行业的大数据涉及的范畴非常广,有效组织并利用这些大数据确实具备跨时代的意义,它甚至会对汽车制造业的升级乃至汽车行业的革命起到至关重要的作用。然而,这些大数据从何而来,如何真正组织起来,却是今天我们所面临的重大课题。这好比一个囧境,让老鼠能够有效躲避猫的最佳方法是给猫的脖子上系个铃铛,但是,这个铃铛如何系在猫脖子上,却是老鼠先要解决的问题。现实要老鼠们不要狂热地只去畅想那个铃铛的作用,而是要务实地去考虑系铃铛的策略。正如大数据之对于车联网,谁能脚踏实地而卓有成效的耕耘,谁才能笑到最后。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22