
最近一直想入门数据分析的小伙伴问我,如果要入事数据分析一直来说要学那些语言呢?其实小编跟企业部门部门与侯选人接触下来,给我的感觉是对于这个初级的数据分析师来,一般前二年做差不多都是老大让你做的是处理临时需求为主,如果小明给我做个报表,给市场部那边拉一些流量情况,所以主要前两年可能如果精通SQL与EXCEL再会点SPSS就差不多了,2年以后,老大会把一些:经营性分析需求与竞品分析给你,这里你可能你要需求统计软件,3年以后会让你做一些会员营销及其它的数据挖掘,这里一般说来如果是互联网行业可能R语言是最为流行。因为R语言是开源的,所以互联网企业很多在手还有一些通迅行业的咨询公司,不过上手还是需要长期的学习;SPSS界面友好型,不过企业用正版也要很大一些数,不过一般是市场研究用的比较多,如果你会用SPSS编程其实功能还是比较强大的,建议如果想先练手可以学这个,上手快;SAS一般是金融企业特别是银行业和医学统计,银行业人员有一些是用SAS做统计,一般是银行业内部人做的,另一种是给银行业做数据挖掘的公司,不过正版一年也要上百万,不是土豪也用不起,听说支付宝都不用,而是用R语言,而且SAS学习没人指导很难学;
所以看小伙伴的选择,想在传统或者咨询公司做的SPSS比较合适,想去金融特别是银行业SAS不错,想进互联网公司学R语言可能是比较明智;
Twisted Python 观点:Python在你列举这些里面是综合功能最强大的,但是这些功能分散在第三方库里面,没有得到有机的整合,相应的学习成本会较高。
Python与R不同,Python是一门多功能的语言。数据统计是更多是通过第三方包来实现的。
具体来说,我常用的Python在统计上面的Package有这样一些
1.Numpy与Scipy。这两个包是Python之所以能在数据分析占有一席之地的重要原因。其中Numpy封装了基础的矩阵和向量的操作,而Scipy则在Numpy的基础上提供了更丰富的功能,比如各种统计常用的分布和算法都能迅速的在Scipy中找到。
2.Matplotlib。这个Package主要是用来提供数据可视化的,其功能强大,生成的图标可以达到印刷品质,在各种学术会议里面出镜率不低。依托于Python,可定制性相对于其他的图形库更高。还有一个优点是提供互动化的数据分析,可以动态的缩放图表,用做adhoc analysis非常合适。
3.Scikit Learn。非常好用的Machine Learning库,适合于用于快速定制原型。封装几乎所有的经典算法(神经网络可能是唯一的例外,不过这个有Pylearn2来补充),易用性极高。
4.Python标准库。这里主要是体现了Python处理字符串的优势,由于Python多功能的属性和对于正则表达式的良好支持,用于处理text是在合适不过的了。
peng wang 观点:Python是一套比较平衡的语言,各方面都可以,而R是在统计方面比较突出,可在处理海量数据可能就比较难胜认。
python与R相比速度要快。python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。Python=R+SQL/Hive
R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用;相比python在这方面贫乏不少。
Python的优势在于其胶水语言的特性,一些底层用C写的算法封装在python包里后性能非常高效(Python的数据挖掘包Orange canve 中的决策树分析50万用户10秒出结果,用R几个小时也出不来,8G内存全部占满)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15