京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面小编给大家简单介绍过拟合和欠拟合时,提到了一个概念:学习曲线,我们通过学习曲线能够很清晰的判别出模型现在说出的状态是欠拟合还是过拟合,下面小编具体整理了学习曲线的相关内容,希望对大家有所帮助。
学习曲线(learning curve)是不同训练集大小,模型在训练集和验证集上的得分变化曲线。横坐标为·样本数,纵坐标为训练和交叉验证集上的得分(如准确率)。
模型在新数据上的表现如何,都能清晰地在展现在学习去线上,我们也能通过这些表现,进而判断模型是否方差偏高或者偏差过高,以及增大训练集是否可以减小过拟合。
如图所示:
(1)当训练集和测试集的误差收敛但却很高时,为高偏差。
左上图中训练集和验证集上的曲线能够收敛,但偏差很高,训练集和验证集上准确率相差很大,却都很差。这种情况下模型对已知数据和未知数据都不能进行准确的预测,很可能是欠拟合。
方法:
增加模型参数,采用更复杂的模型,减小正则项。
注意:此时通过增加数据量是不起作用的。
(2)当训练集和测试集上误差之间有大的差距时,为高方差。
当训练集的准确率比其他独立数据集上的测试结果的准确率要高时,一般都是过拟合。
右上图中,训练集和验证集的准确率差距很大,这种情况下,模型能够很好的拟合已知数据,但是泛化能力不足,属于高方差,很可能是过拟合。
方法:
增大训练集,降低模型复杂度,增大正则项,或者通过特征选择减少特征数。
(3)右下方图,也是最理想情况:找到偏差和方差都很小的状态,就是收敛而且误差较小。
学习曲线的具体操作:
len(X_train) 个训练样本,训练出 len(X_train) 个模型,第一次使用一个样本训练出第一个模型,第二次使用两个样本训练出第二个模型,… ,第 len(X_train) 次使用 len(X_train) 个样本训练出最后一个模型;
每个模型对于训练这个模型所使用的部分训练数据集的预测值:y_train_predict = 模型.predict(X_train[ : i ]);
每个模型对于训练这个模型所使用的部分训练数据集的均方误差:mean_squared_error(y_train[ : i ], y_train_predict);
每个模型对于整个测试数据集的预测值:y_test_predict = 模型.predict(X_test)
每个模型对于整个测试数据集的预测的均方误差:mean_squared_error(y_test, y_test_predict);
绘制每次训练模型所用的样本数量与该模型对应的部分训练数据集的均方误差的平方根的关系曲线:plt.plot([i for i in range(1. len(X_train)+1)],np.sqrt(train_score), label=“train”)
绘制每次训练模型所用的样本数量与该模型对应的测试数据集的预测的均方误差的关系曲线:plt.plot([i for i in range(1. len(X_train)+1)],np.sqrt(test_score), label=“test”)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26