京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python可以说是近几年最火热、最实用的、最容易上手的工具之一了。功能强大、应用广泛,可以帮你搜集工作数据,还能帮你下载音乐,电影,于是就掀起了一波学习python的大潮,小编也毫不犹豫的加入了。但是对于向小编一样的小白来说,刚开始学习还是有些困难的,需要首先了解python的一些基础知识。所以小编就整理了一些常用的python库,希望对正在学习python的小伙伴有所帮助。
1.Matplotlib
Matplotlib是一个用于创建二维图和图形的底层库。藉由它的帮助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。matplotlib能够与很多流行的绘图库结合使用。
2.Seaborn
Seaborn本质上是一个基于matplotlib库的高级API。它包含更适合处理图表的默认设置。此外,还有丰富的可视化库,包括一些复杂类型,如时间序列、联合分布图(jointplots)和小提琴图(violindiagrams)。
3.Plotly
Plotly是一个流行的库,它可以让你轻松构建复杂的图形。该软件包适用于交互式Web应用程,可实现轮廓图、三元图和三维图等视觉效果
4.Bokeh
Bokeh库使用JavaScript小部件在浏览器中创建交互式和可缩放的可视化。该库提供了多种图表集合,样式可能性(stylingpossibilities),链接图、添加小部件和定义回调等形式的交互能力,以及许多更有用的特性。
5.Pydot
Pydot是用纯Python编写的Graphviz接口,经常用于生成复杂的定向图和无向图,能够显示图形的结构,对于构建神经网络和基于决策树的算法时非常有效。
6.pyecharts
是基于百度开源的Echarts而开发的Python可视化工具。
pyecharts功能非常强大,支持多达400+地图;支持JupyterNotebook、JupyterLab;能够轻松集成至Flask,Sanic,Django等主流Web框架
7.AutoViz
数据可视化,大多数都需要把数据读取到内存中,然后对内存中的数据进行可视化。但是,对于真正令人头疼的是一次又一次的开发读取离线文件的数据接口。
而AutoViz就是用于解决这个痛点的,它真正的可以做到1行代码轻松实现可视化。对于txt、json、csv等主流离线数据格式能够同时兼容,经常用于机器学习、计算机视觉等涉及离线数据较多的应用场景。
8.Altair
Altair是一款基于Vega和Vega-Lite开发的统计可视化库。具有API简单、友好、一致等优点,使用起来非常方便,能够用最简短的代码实现数据可视化。
9.cufflinks
cufflinks结合了plotly的强大功能和panda的灵活性,可以方便地进行绘图,避免了数据可视化过程中,对数据存储结构和数据类型进行复杂的麻烦。
10Pygal
Pygal 的名气不是很大,使用图形框架语法来构建图像的。绘图目标比较简单,使用起来非常方便:实例化图片;用图片目标属性格式化;用 figure.add() 将数据添加到图片中即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27