京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Bi这里是的意思就是Binary,二进制的意思,所以有时候叫这个算法为二进Kmeans算法。为什么我们需要用BiKmeans呢,就是为了解决初始化k个随机的质心点时其中一个或者多个点由于位置太极端而导致迭代的过程中消失的问题。BiKmeans只是Kmeans其中一个优化方案,其实还是有很多优化的方案,这里BiKmeans容易讲解和理解,并且容易用numpy, pandas实现。
那为什么二进Kmeans算法可以有效的解决这个问题呢。我们需要从二进Kmeans的基础看是讲起。其实BiKmeans的迭代过程类似于一个决策树。首先我们看一下K-means聚类等算法的步骤。
利用之前写好的Kmeans算法包,设置k为2。所以每次传入一个数据集的时候,都是进行2分类。
假设我们预先想分出K个簇。
那这个算法其实就是非常的类似决策树的算法。在决策树节点由父节点划分成子节点的过程中,用的是gini不纯度来判断是否需要划分,我们选择不纯度差值最大的那个特征来做划分。这里也类似,我们最后的目标是最小化SSE,所以对每一个簇来说,都可以得出该簇在划分出成2个簇之后总体上SSE降低了多少,我们需要做的就是保持其他的簇不变,选取的就是那个能够最大程度的降低SSE的那个簇进行Kmeans二分类。
那个算法里面还是有个缺陷,就是在算法的过程中,会对每个簇重复计算划分后SSE的差值,所以这里我在对每个簇做划分后,记录下它的SSE差值,后期就可以直接使用SSE,不用重新再计算一遍了。
我们首先用决策树的概念来看下BiKmeans,我们目标是分成4个簇,首先有我们有我们的根节点,也就是我们的整体的数据集,假设这个数据集的SSE为100.
首先先读取数据,读取的是上次我们在Kmeans中间过程最后展示原始Kmeans理论缺陷的那组数据。
from Kmeans_pack import *
r = 4
k = 3
x , y = make_blobs(n_samples = 400,
cluster_std = [0.2, 0.4, 0.4, 0.4],
centers = [[0.3,-1],[1,1],[-1,1], [-1,-1]],
random_state = r
)
np.random.seed(r)
sim_data = pd.DataFrame(x, columns = ['x', 'y'])
sim_data['label'] = y
dataset = sim_data.copy()
现在我们尝试的将数据只做一次二分Kmeans的迭代,查看结果,这个时候会有两种结果
在这两个情况下,我们看到2分Kmeans可以将当前数据集分成2个簇,紧接着我们就需要尝试分别对蓝色和黄色的簇进行2分Kmeans查看每个簇划分后SSE下降了少。我们会首先写一个Split函数,对每个传进去的数据集进行2分Kmeans。但是这里需要注意是否是第一次做划分,就比如上面的情况。
这里我们首先有个split函数,专门用来对传入的数据做2分Kmeans,算出聚类前和聚类后的SSE,比如说假如这个时候我们有x和y,\bar{x}xˉ和\bar{y}yˉ为x和y的平均值
\left[ \begin{matrix} (x_{1}-\bar{x})^2 + (y_{1}-\bar{y})^2 \\ (x_{2}-\bar{x})^2 + (y_{2}-\bar{y})^2 \\ (x_{3}-\bar{x})^2 + (y_{3}-\bar{y})^2 \end{matrix} \right]⎣⎡(x1−xˉ)2+(y1−yˉ)2(x2−xˉ)2+(y2−yˉ)2(x3−xˉ)2+(y3−yˉ)2⎦⎤
def Split(dataset):
#假设当前数据不是第一次二分Kmeans,就是说传进来的是整体的数据集,当前的质心点就是每个特征的平均值
temp_data = dataset.loc[:, dataset.columns != 'label'].copy()
#计算当前数据集的SSE
current_error = np.power(temp_data - temp_data.mean(), 2).sum().sum()
#对数据集做二分Kmeans
curr_group, SSE_list, centers = Kmeans_regular(temp_data, k = 2)
#记录二分后的SSE
after_split_error = SSE_list[-1]
#已经有了curr_group将二分类后的数据集先拿出来
clusters = list(dataset.groupby(curr_group))
#这里有非常非常少的情况会出现二分Kmeans中初始的质心点其中一个由于离所有的都太远,导致丢失的情况
#所以这里多加了一个判断,假如其中一个质心掉了,那上面给的clusters只有一个而不是两个
#在这个情况下,dataset没有被成功二分类,我们需要将dataset自身给return,进行下一次迭代,肯定有一次迭代能成功分出2个簇
#所以在这个情况下entropy就是current_error, cluster1就是dataset自己,cluster2为空
if len(clusters) == 1:
entropy = current_error
return [entropy, dataset, None, current_error]
#分别取出2个簇
cluster1, cluster2 = [i[1] for i in clusters]
#计算这个簇做了二分Kmeans后SSE下降的多少
entropy = current_error - after_split_error
#最后返回结果,返回当前这个簇二分后的SSE差值,分出的簇1和簇2,还有当前这个簇的SSE
return [entropy, cluster1, cluster2, current_error]
这个函数写好之后我们来测试一下,当前我们将所有的数据全部传进去后,给出的结果
entropy, cluster1, cluster2, current_error = Split(dataset) entropy, cluster1.shape[0], cluster2.shape[0], current_error
(432.9176440191153, 200, 200, 813.3842612925762)
当前数据集做完二分后整体SSE由原来的813,下降了432.92。
接下来就是需要完成2分Kmeans的迭代过程
def bi_iterate(dataset, k = 4):
#首先准备一个空的cluster_info_list,这个list是用来存二分后的结果,里面每一个元素都是一个簇
#对于每个元素来说,它代表的是个簇,里面记录的这个簇的[entropy, cluster1, cluster2, current_error]
#也就是每个簇的[SSE差值,第一个二分后的簇,第二个二分后的簇,当前簇的SSE]
cluster_info_list = []
#使用while做循环直到cluster_info_list里面一共达到k个簇的时候停止
while len(cluster_info_list) < k:
#假如当前我们是第一次迭代的话也就是cluster_info_list是空list的话做以下操作
if len(cluster_info_list) == 0:
#直接用Split函数,将整体数据集放入cluster_info_list里,然后下面的操作都不用,continue进入下一个循环
cluster_info_list.append(Split(dataset))
continue
#首先将cluster_info_list最后一个元素取出来,cluster_info_list里面是所有簇的信息
#我们后面会对cluster_info_list做sort,由于cluster_info_list里面每个元素的第一位是SSE差值
#所以我们做完sort后,最后一个元素肯定是SSE差值(entropy)最大的那一个,也就是我们需要下一步做二分的簇
#将最后一个元素里的2个clusters取出来后,将这个当前在cluster_info_list里SSE最大的一个簇删除掉(pop方法)
#取而代之的是Split(cluster1)和Split(cluster2),也是就尝试着对新的两个cluster尝试去算SSE差值
cluster1, cluster2 = cluster_info_list[-1][1:-1]
cluster_info_list.pop(-1)
#将Split(cluster1)和Split(cluster2)的结果追加到cluster_info_list
#注意假如只有cluster2给出的是None,则碰到二分类不成功的情况,cluster1还为原来上一次dataset,cluster2为空
#不将cluster2追加到cluster_info_list当中
cluster_info_list.append(Split(cluster1))
if cluster2 is not None:
cluster_info_list.append(Split(cluster2))
#整体的cluster_info_list进行一次sort,找出当前所有的簇中,哪一个簇的SSE差值最大
#这里我们是需要对整体cluster_info_list做sort,因为新追加进去的2个心cluster的SSE差值可能没有cluster_info_list里已经记录的簇的SSE大。
cluster_info_list.sort()
#进入下一个循环
return cluster_info_list
将总共的代码都放在一起,内容不多,和网上的代码相比的话,简单易懂量少,也避免了效率较低的for循环。
from Kmeans_pack import * def Split(dataset): temp_data = dataset.loc[:, dataset.columns != 'label'].copy() current_error = np.power(temp_data - temp_data.mean(), 2).sum().sum() curr_group, SSE_list, centers = Kmeans_regular(temp_data, k = 2) after_split_error = SSE_list[-1] clusters = list(dataset.groupby(curr_group)) if len(clusters) == 1: entropy = current_error return [entropy, dataset, None, None, current_error] cluster1, cluster2 = [i[1] for i in clusters] entropy = current_error - after_split_error return [entropy, cluster1, cluster2, centers, curr_group, current_error, dataset] def bi_Kmeans(dataset, k = 4): cluster_info_list = [] while len(cluster_info_list) < k: if len(cluster_info_list) == 0: cluster_info_list.append(Split(dataset)) continue cluster1, cluster2 = cluster_info_list[-1][1:3] cluster_info_list.pop(-1) cluster_info_list.append(Split(cluster1)) if cluster2 is not None: cluster_info_list.append(Split(cluster2)) cluster_info_list.sort() return cluster_info_list
我们测试一下代码,返回的cluster_info_list里面所有的元素都是簇的信息,每个元素的最后一位都是这个簇的簇内SSE,所以我们可以用列表解析的方法将每个元素的最后一位取出来,进行相加就能得到BiKmeans最后的结果给出的整体的SSE,我们可以看出在数据集要4个簇的前提下,我们SSE最后为95.64
np.random.seed(1) cluster_info_list = bi_Kmeans(dataset, k = 4)
我们也可以将这个结果和原始写好的Kmeans_regular做比较
regular_SSE = []
bi_SSE = []
for i in range(50):
curr_group, SSE_list, centers = Kmeans_regular(dataset, k = 4)
cluster_info_list = bi_Kmeans(dataset, k = 4)
bi_sse = sum([i[-1] for i in cluster_info_list])
regular_SSE.append(SSE_list[-1])
bi_SSE.append(bi_sse)
data_compare = pd.DataFrame({'ReKmeans':regular_SSE,'BiKmeans':bi_SSE}) data = [go.Scatter(x = data_compare.index + 1, y = data_compare[i], mode = 'lines+markers', name = i ) for i in data_compare.columns] layout = go.Layout(title = '原始Kmeans与二分Kmeans的SSE稳定性比较', xaxis = {'title' : '次数'}, yaxis = {'title' : 'SSE值'}, template = 'plotly_white' ) fig = go.Figure(data = data, layout = layout) #fig.show()
我们这里随机的跑30次,来比较最后2个算法所得到的SSE,我们这里主要查看稳定性。可以从图中看出对于原始的(RegularKmeans)的SSE非常不稳定,而对于BiKmeans来说的话,SSE非常稳定,一直保持在大约95左右。这里就体现出的BiKmeans的优点,可以很大概率的(不是绝无可能)保证每次随机生成的2个质心点不会因为太极端而导致其中一个丢失的问题,从而导致最后SSE很高,结果陷入局部最优的这样一个问题。
这里我们不会像Kmeans中间过程那样给出详细的从随机选取的质心点到收敛的过程。我们这个给出一个大致的BiKmeans中间过程,有助于同学们理解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23