京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着信息时代的来临以及大数据的发展,数据挖掘和数据分析也如雨后春笋般火热起来,很多人对于数据挖掘和数据分析也是字面上的了解,对这两种事物并没有多么深入的了解,下面我们就给大家讲一讲这两种事物的区别。
其实在数据应用的角度上面来说,这个问题其实没有什么意义,这是因为在企业的商业战争中,在通过使用数据分析分析问题的时候,我们首先考虑的是思路,考虑完了这些思路我们才会对与思路匹配的分析挖掘技术进行筛选,而不是先考虑到底是用统计技术还是用数据挖掘技术来解决这个问题。从数据挖掘和数据分析来说,两者在很多的情况中都是很相似的,尤其是在典型的数据挖掘技术的决策树里,CART、CHAID等理论方法都是基于统计理论所发展和延伸的,并且数据挖掘中的技术有相当比例是用统计学中的多变量分析来支撑的。
那么相对于传统的统计分析技术种数据挖掘有什么特点呢?数据挖掘的特点就是特别擅长于处理大数据,尤其是几十万行、几百万行,甚至更多更大的数据。在实践应用中一般都会借助数据挖掘工具,而这些挖掘工具的使用,很多时候并不需要特别专业的统计背景作为必要条件。需要强调的是基本的统计知识和技能是必需的。基础的统计知识是数据挖掘工作能够顺利进展的前提。
就目前的信息化时代中,数据分析应用的趋势是从大型数据库中抓取数据,并通过专业软件进行分析,所以数据挖掘工具的应用更加符合企业实践和实战的需要。从操作者来看,数据挖掘技术更多是企业的数据分析师、业务分析师在使用,而不是统计学家用于检测。很多观点数据挖掘是统计分析技术的延伸和发展,数据挖掘在统计分析形成了比较明显的差异。
首先,数据的统计分析的基础之一就是概率论,这是因为在对数据进行统计分析时,分析人员常常需要对数据分布和变量的关系做假设,确定用什么概率函数来描述变量间的关系,以及如何检验参数的统计显着性。而在数据挖掘的应用中,分析人员不需要对数据分布做任何假设,数据挖掘中的算法会自动寻找变量之间的关系。
数据挖掘和数据分析的区别我们在这篇文章中给大家介绍了一部分,就是在统计分析方式中存在比较明显的差异,我们在下一个文章中给大家介绍其他的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22