京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在上一篇文章中给大家介绍了数据挖掘和数据分析的区别,主要就是数据挖掘在统计分析形成了比较明显的差异。在这种明显的差异中我们能够分清楚数据分析以及数据挖掘的区别,我们在这篇文章中给大家介绍更多的知识。
在上一篇文章中我们给大家介绍了数据挖掘的特点,就是数据挖掘可以使用在海量的数据中,所以相对于海量、杂乱的数据,数据挖掘技术有明显的应用优势。而统计分析在预测中的应用常表现为一个或一组函数关系式,而数据挖掘在预测应用中的重点在于预测的结果,很多时候并不会从结果中产生明确的函数关系式,有时候甚至不知道到底是哪些变量在起作用,又是如何起作用的。这就需要我们举例说明了。
典型的例子就是比较神奇的神经网络挖掘技术,这个技术里面有一个隐蔽层,这个隐蔽层的存在的意义就是没有人能在所有的情况下读懂里面的非线性函数是如何对自变量进行组合的。在实践应用中,这种情况常会让习惯统计分析公式的分析师或者业务人员感到困惑,这也确实影响了模型在实践应用中的可理解性和可接受度。
如果我们换种思维方式从实战的角度考虑的话,那么我们只要模型能正确预测客户行为,这样就能为精细化运营提供准确的细分人群和目标客户,业务部门、运营部门不了解模型的技术细节。而在实践应用中,统计分析常需要分析人员先做假设或判断,然后利用数据分析技术来验证该假设是否成立。而在数据挖掘中,分析人员并不需要对数据的内在关系做任何假设或判断,而是会让挖掘工具中的算法自动去寻找数据中隐藏的关系或规律。由此可见,数据挖掘和数据分析两者的思维方式并不相同,这给数据挖掘带来了更灵活、更宽广的思路和舞台。
所以我们在进行数据挖掘工作或者数据分析中针对具体的业务分析需求,先确定分析思路,然后根据这个分析思路去挑选和匹配合适的分析算法、分析技术、而且一个具体的分析需求一般都会有两种以上不同的思路和算法可以去探索,从而决定最终的思路、算法和解决方案。
在这篇文章中我们给大家讲述完了数据挖掘以及数据分析的区别了,数据挖掘以及数据分析的另一个明显区别就是思维方式以及实战的角度,只有了解了这些,我们才能够做好任何一项工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27