京公网安备 11010802034615号
经营许可证编号:京B2-20210330
那么这个代码是用于建模初期,你为了大概了解变量的一个基本特征写的,不是最优分组哈,因为这个代码是将变量最多分为12组,分这么多组的原因也是为了更好的观察特征而已啦,你要是觉得太多组,你可以改下树的深度这些调整一下,这里关于变量特征怎么看,我就不说了.....
%macro
zhandapao(data,DVAR,id,dir);
proc datasets lib=work nodetails;
delete
varname_total;
run;
/*建立数值型数据集*/
%let lib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql noprint;
select name,count(*) into :var_list separated by' ',:var_num
from sashelp.VCOLUMN
where left(libname)="&lib."and
left(memname)="&dname."and
type="num"and
lowcase(name)^=lowcase("&DVAR.")
and lowcase(name)^="&id.";
quit;
%put
&var_list.;
/*把数值型变量定义为宏变量*/
%doi=1%to&var_num.;
%letnumvar_name_&i.=%scan(&var_list.,&i.);
%put&numvar_name_1.;
proc split data=&data.splitsize=300
maxbranch=2
MAXDEPTH=5nsurrs=5
assess=lift criterion=gini;
input &&numvar_name_&i./level=interval;
target &DVAR./level=binary;
Score data=&data.out=d_&&numvar_name_&i.;
code file="&dir.treecode_tic_&&numvar_name_&i..sas";
describe file="&dir.treerule_tic_&&numvar_name_&i..txt";
run;
data n_D_&&numvar_name_&i.;
set d_&&numvar_name_&i.;
%include"&dir.treecode_tic_&&numvar_name_&i..sas";
rename p_&DVAR.1=p_&&numvar_name_&i.;
run;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total, :max ,:min from n_D_&&numvar_name_&i.;
quit;
data n_D_&&numvar_name_&i.;
set n_D_&&numvar_name_&i.;
if &min.<=&&numvar_name_&i.<=&max.
then flag="no_null";
else flag="null";
run;
proc sql;
select count(*) into:is_null from
n_D_&&numvar_name_&i.;
quit;
%if&is_null.>0%then%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as
varname,
min(&&numvar_name_&i.) as interval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
union all
select"&&numvar_name_&i."as varname,
-9999as interval_1,
-9999as interval_2,
'null'as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.(where=(&&numvar_name_&i.=.))
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
%else%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as varname,
min(&&numvar_name_&i.) asninterval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
data &&numvar_name_&i.;
set total;
group=_n_;
run;
proc append base=varname_total
data=&&numvar_name_&i.
force;run;
proc datasets lib=work nodetails;
delete total n_: d_:
&&numvar_name_&i.
_namedat;
quit;
%end;
%mend;
解释一下这个代码怎么用,这个宏已经是封装好了的,直接填入参数就可以用了:
zhandapao(data,DVAR,id,dir);
data:填入你的数据集
DVAR:填入你的因变量
id:填入你的数据集的主键
dir:这个你需要填一个路径,是用来放决策树的规则的文件下,决策树的规则文件你看不懂没关系,你填个类似“F/DD”的路径就可以了。
例子:%zhandapao(DD.TEST_DATA,y,CUSTOMER_id,D:test_1);
结果图就是这样子:
那么今天的更新就到这里啦
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22