
那么这个代码是用于建模初期,你为了大概了解变量的一个基本特征写的,不是最优分组哈,因为这个代码是将变量最多分为12组,分这么多组的原因也是为了更好的观察特征而已啦,你要是觉得太多组,你可以改下树的深度这些调整一下,这里关于变量特征怎么看,我就不说了.....
%macro
zhandapao(data,DVAR,id,dir);
proc datasets lib=work nodetails;
delete
varname_total;
run;
/*建立数值型数据集*/
%let lib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql noprint;
select name,count(*) into :var_list separated by' ',:var_num
from sashelp.VCOLUMN
where left(libname)="&lib."and
left(memname)="&dname."and
type="num"and
lowcase(name)^=lowcase("&DVAR.")
and lowcase(name)^="&id.";
quit;
%put
&var_list.;
/*把数值型变量定义为宏变量*/
%doi=1%to&var_num.;
%letnumvar_name_&i.=%scan(&var_list.,&i.);
%put&numvar_name_1.;
proc split data=&data.splitsize=300
maxbranch=2
MAXDEPTH=5nsurrs=5
assess=lift criterion=gini;
input &&numvar_name_&i./level=interval;
target &DVAR./level=binary;
Score data=&data.out=d_&&numvar_name_&i.;
code file="&dir.treecode_tic_&&numvar_name_&i..sas";
describe file="&dir.treerule_tic_&&numvar_name_&i..txt";
run;
data n_D_&&numvar_name_&i.;
set d_&&numvar_name_&i.;
%include"&dir.treecode_tic_&&numvar_name_&i..sas";
rename p_&DVAR.1=p_&&numvar_name_&i.;
run;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total, :max ,:min from n_D_&&numvar_name_&i.;
quit;
data n_D_&&numvar_name_&i.;
set n_D_&&numvar_name_&i.;
if &min.<=&&numvar_name_&i.<=&max.
then flag="no_null";
else flag="null";
run;
proc sql;
select count(*) into:is_null from
n_D_&&numvar_name_&i.;
quit;
%if&is_null.>0%then%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as
varname,
min(&&numvar_name_&i.) as interval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
union all
select"&&numvar_name_&i."as varname,
-9999as interval_1,
-9999as interval_2,
'null'as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.(where=(&&numvar_name_&i.=.))
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
%else%do;
proc sql noprint;
select count(*),max(&&numvar_name_&i.),min(&&numvar_name_&i.)into:total,:max ,:min from n_D_&&numvar_name_&i.;
create table total as
select"&&numvar_name_&i."as varname,
min(&&numvar_name_&i.) asninterval_1,
max(&&numvar_name_&i.) as interval_2,
compress(put(min(round(&&numvar_name_&i.,0.0001)),best32.))||'-'||compress(put(max(round(&&numvar_name_&i.,0.0001)),best32.)) as interval,
sum(&DVAR.) as bad_num,
count(*) as total_num,
count(*)/&total.as num_rate,
sum(&DVAR.)/count(*) as bad_rate
from n_D_&&numvar_name_&i.
group by p_&&numvar_name_&i.
order by interval_1;
quit;
%end;
data &&numvar_name_&i.;
set total;
group=_n_;
run;
proc append base=varname_total
data=&&numvar_name_&i.
force;run;
proc datasets lib=work nodetails;
delete total n_: d_:
&&numvar_name_&i.
_namedat;
quit;
%end;
%mend;
解释一下这个代码怎么用,这个宏已经是封装好了的,直接填入参数就可以用了:
zhandapao(data,DVAR,id,dir);
data:填入你的数据集
DVAR:填入你的因变量
id:填入你的数据集的主键
dir:这个你需要填一个路径,是用来放决策树的规则的文件下,决策树的规则文件你看不懂没关系,你填个类似“F/DD”的路径就可以了。
例子:%zhandapao(DD.TEST_DATA,y,CUSTOMER_id,D:test_1);
结果图就是这样子:
那么今天的更新就到这里啦
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18