
关于区块链的七大认识误区
基于区块链的系统未来前景广阔,但我们需要非常清楚区块链可以做什么。想象一下未来20年的区块链技术,其影响可能与互联网一样大。
但是令人震惊的是,我们今天主要看到项目貌似基于去中心化设计,其实存在一些对区块链认识的错误观念。
如果我们想让技术朝正确的方向不断推进,我们需要将这种狂热转化为具有生产力并且合乎实际的期望,从而降低供应链跌入“谷底”的可能性,一旦跌入“谷底”,它就可能会与无意义的概念验证一同被丢弃在角落,无人问津。
让我们来看看对区块链冠以不切实际期望的七大误区:
误区1:具有高度的可扩展性
与传统的(基于服务器的)交易方法相比,区块链部署不具有真正的可扩展性,并且目前交易时间取决于缓慢的一方。它们只对某些类型的交易是可扩展的,比如有效载荷小的和接近某种极限的交易。你不能只在区块链上堆积信息。
误区2:是绝对安全的
尽管区块链基于加密标准,但确保隐私的方法完全在任何区块链标准和实施之外的。只有加密专家才能真正理解和验证区块链整合。但是,每个实施者都有责任确保安全性,因此这种处理方式很大程度上与旧时代的金融交易管理方式相同。
误区3:值得信赖
区块链确保交易和信息的完整性,否则在区块链中储存的任何内容都不可信赖。你需要通过确保在区块链中存储事实的各方值得信赖并能确保事实的真实性,才能确定它是真正可信赖的。这个治理模式允许多方对基础设施承担连带责任,同时需要安全访问才能在区块链中存储事实。
误区4:可在区块链中放入任何东西
区块链是一种以代码表示的协议,它并没有按照任何标准进行定义。没有标准机构来提供制裁的实施规则或指导。
通常情况下,你只能处理小型有效载荷,并且你仍需要所有参与者之间达成一致的标准,以便任何人了解存储的内容。
误区5:可在智能合约中表达任何东西
虽然这在技术上是可行的,但在实践中,区块链仅限于简单且易于理解的用例。智能合约本质上是非常复杂的。按照设计,一旦发布,你无法修改或修复它们。它们包含非常复杂的交互和不可撤销的结果。
误区6:不喜欢公有链,请选择私有链
私有链并不是获取隐私或访问受限信息的通道。事实上,你甚至可以认为私有链不应该成为一个公开的选项。尽管如此,企业区块链可能无法实现区块链技术的任何固有优势,私人开发的区块链可能缺乏确保其属性所必需的社区和学术审查。
误区7:社区的大小无所谓
由社区推动的区块链产品正在由私人玩家在各方面进行分叉,他们以各种方式加强它们的作用。但是,由采用者、用户、学者和实施者组成的大型社区是确保密码属性生效的唯一力量。只有拥有最大社区和安装采用基地的开源区块链才会持续。其余的可以被认为是实验室中的实验,其中99.9%会“死于非命”。
精明的技术人员会根据用例和一系列头脑中的首要原则不断前进。首先,可能永远不会有一个区块链来管理他们所有人。两种不同的用例需要不同的区块链。有些的参与者很多,有些很少,有些会围绕事实需要很强的隐私,有些会充分透明。
考虑到以上所有内容,我们现在能共同做的就是进行创新、攻克真正的业务问题,并发起推动概念验证,以更好地理解区块链的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29