京公网安备 11010802034615号
经营许可证编号:京B2-20210330
套利准备工作及套利操作的基本原则
套利准备工作
1、套利经验模型的建立
对于拟套利的两个合约(或多个合约)之间的价格波动,需要处理较长的历史数据来反映彼此的关系。一般而言,数据年限越长,所显示的套利区间的有效性越好,因为从统计学的角度来看,这样可以将大概率事件全部囊括其中,具有较高的可靠性。
2、套利空间的确立
对于两合约价格的关系,一般会进行相应的数据处理,较为直观的方法就是用价格比来表示。将数据处理到一张图上,就可以得到一张价格比曲线图,考察价格比曲线的长期波动情况,可以找出套利的上限和下限。通俗地讲,即两合约的比价扩大到一定程度时就会不断缩小,而缩小到一定程度时,又会不断扩大,如此循环往复。确定套利空间,就是要找出套利在何种情况下进行建立套利头寸,在何种情况下要对冲离场。
由于套利操作一般不考虑价格波动的方向,而主要考虑价差的扩大与缩小,因此,除了要确知价差的绝对数值外,还要特别注意价差的波动形势。
如图5-1所示,上海期货交易所3月期铜与伦敦金属交易所铜的比价大多数时间在8.0~10.0之间波动,中轴在9.0。从统计学角度来看,上海期货交易所与伦敦金属交易所3月期铜的比价在8.0~10.0之间波动应是一个大概率事件,因此,其套利区间为8.0~10.0。
图5-1 2004-2011年上海3月钢与伦敦3月铜的比价关系
3、套利操作的基本原则
当套利区间被确立,而当前的状态又显示出套利机会时,就可以进行套利操作了。
一般而言,要遵循下述基本原则:
(1)买卖方向对应的原则:即在建立买仓的同时建立卖仓,而不能只建买仓,或是只建立卖仓。
(2)买卖数量相等原则:在建立一定数量的买仓同时要建立同等数量的卖仓,否则,多空数量的不相配就会使头寸裸露(即出现净多头或净空头的现象)而面临较大的风险。
(3)同时建仓的原则:一般来说,多空头寸的建立要在同一时间进行。鉴于期货价格波动,交易机会稍纵即逝,如不能在某一时刻同时建仓,其价差有可能变得不利于套利,从而失去套利机会。
(4)同时对冲原则:套利头寸经过一段时间的波动后达到了一定的所期望的利润目标时,需要通过对冲来结算利润,对冲操作也要同时进行。因为如果对冲不及时,很可能使长时间取得的价差利润在顷刻间消失。
(5)合约相关性原则:套利一般要在两个相关性较强的合约间进行,而不是所有的品种(或合约)之间都可以套利。这是因为只有合约的相关性较强,其价差才会出现回归,即价差扩大(或缩小)到一定程度又会恢复到原有的平衡水平,这样,才有套利的基础,否则,在两个没有相关性的合约上进行套利,与分别在两个不同的合约上进行单向投机没有什么两样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15