精准营销神器之客户画像,你值得拥有
现如今越来越多的用户偏爱线上交易,越来越少的人会选择去银行网点咨询,银行业要如何精准营销呢?相比传统的问卷调查,大数据金融科技可以更好地为银行赋能。
为进一步精准、快速分析用户行为习惯、客户画像应运而生,本文就为大家阐述客户画像是如何生成的。
客户信息千千万,在生成客户画像前,需要了解业务方向与重心,例如,某行想知道零售客户群的分布情况,以及客户标签。故本文就以客户资产、投资偏好、风险承受能力三方面收集了近千条数据。
采用经典机器学习算法——聚类算法来生成客户画像,由于聚类算法是无监督模型,数据质量直接决定分群结果的好坏,这里收集到的数据大部分经过处理。
目标
1. 利用聚类算法,得到合理的分群客户。
2. 对聚类中心进行解释,生成客户标签。
3. 阐述测试样本如何分群。
数据源
本文用到的数据已经同步到kaggle数据集中,并将字段说明与结果一同上传了。
https://www.kaggle.com/yuzijuan/customer-clust
开始
环境与工具
Rstudio、openxlsx、fpc、cluster、Nbclust
调库及数据清洗
读取数据,由于数据类型大部分是连续性,故选择kmeans聚类算法,选取连续性字段,剔除掉仅有一个值的变量、剔除掉ID、年月等信息,查询数据分布,发现数据质量较好,可以用于建立数学模型。
建立聚类模型
因为kmeans算法是根据距离求得相似性,故要消除源数据的量纲,这里用scale()将源数据进行Z变化,得到一系列均值为0,方差为1的正态分布。再对每一列数据求和,验证是否变化完毕。如果源数据有取值仅为一值或者严重偏态的数据,验证便不会通过。
这种结果表示验证通过,列求和的数据位于0左右。如果出现下面的情况,则表明前面数据处理有仅有一值的数据,需要处理这样的数据。
距离的计算公式有很多,这里给出常见的几种连续性和离散型计算方式。本文全篇的计算方式均为欧式距离。
聚类的思想较为简单,难点在于要确定初始聚类中心和类别数。如果想自定义初始聚类中心,可先通过采样,用层次法对样本聚类,可以预估k-means的k值和簇中心,以这些k值和簇中心,作为大样本的初始点。对于K值的选取,R中有一个很棒的包,叫NbClust,提供了三十种评价评价指标,用于选择K值,包括聚合优度、轮廓系数以及CCC检验。执行代码如下。
通过结果可以看出,在评价指标中有6个选择分为2类,有5个选择分为3类,有6个选择分为5类。由于奥卡姆剃刀原理存在,系统推荐是分为2类,而基于业务角度思考,分为5类最为可靠。故后续我们将聚类类别分为5类。
由分类分布可知,2类和5类是一样多的票数。
再由kmeans()进行聚类。给定聚类中心为5个,最大迭代20次。算得聚类优度为0.39,给定聚类中心为2个时算得聚类优度为0.13,再次证明选择5类效果更好。
生成聚类结果
通过cluster.km$cluster可知各个样本的类别,再求得各个类别的均值,以及各类均值与总均值之比,可以看出各个类别的差异,以便给客户打标签。代码如下最后将聚类得分保存为clus_profile2.csv文件中。
通过clusplot()可以看前两个成分下的二维聚类效果图,从图中可以看出,聚类结果较好。因为较为明显地将客户分开。
后续我又用kmedios中心聚类,又将数据聚为5类,效果不如kmeans,聚类图如下。
可以看出,中心聚类下,数据有大量重叠的,而均值聚类,较好区分各个类别。
解读聚类结果
聚类算法相比于其他机器学习算法,其实还是很简单的,而聚类的难点就是需要使结果具有可解读性,也就是为客户打标签的过程。本文借助了银行对个人理财产品的风险承受能力评估等级,从低到高分别:A1(保守型)、A2(稳健型)、A3(平衡型)、A4(进取型)、A5(激进型);将得分超过100分(即比总体分布均值大)的标为红色,将得分低于65(即不达总体分布均值的65%)的标为绿色。可以看出区分程度较好。具体解读结果如下。
以第三类举例,可以看出,第三类客户在资产余额、总权益余额、近6月资产均值、近6月总权益均值的比分上均远远大于均值,并且客户爱购买债券、没有投资股票、基金、理财、贵金属、交易较为频繁且金额较大,基于这个特点,我给这类客户定义为高资产、稳中求进、投资意愿高而投资方向上,很可能属于年长多金爱存款的类别,风险承受为平衡型。当然,打标签是一个很好玩的过程,本文主要给大家介绍如何解读,至于解读得好不好,就仁者见仁智者见智。
测试新样本
最后,我简单计算了一下,如果进来新样本是如何计算类别的,由于本文仅1000条数据,没有新样本,故我将训练样本选择了200条作为新样本,纳入模型计算距离并得到类别数。代码如下。
得到的测试结果展示如下。
与原来的聚类结果相比发现并不是百分百聚类正确。不足5%的会聚类错误,在可允许范围内。
最后如果要给领导看,那么就要学会在解读结果方面下文章,给领导讲讲故事,一个好的客户画像不仅需要使结果具有可解读性,更要能够清晰展现客户特点,以便后续精准营销。
结语
本案例不足之处在于:
1. 样本量不算充裕,可能导致在聚类结果上有一定的偏差。
2. 本文未对离散型数据如何处理进行阐述。因为本案例中没有离散型数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03