
R语言建立VAR模型分析联合内生变量的动态关系
最近在写向量自回归的论文,无论是百度还是Google,都没能找到特别合适的R环境下中文资料,大都是Eviews做出来的。所以写这么一篇blog来分享下自己的经验。
注:本文着重介绍VAR的R实现,具体学术性质的东西请参阅相关学术论文。
VAR的定义:
自行Google,很详细,也很简单
VAR模型的用途:
主要是预测分析和内生变量间影响状况分析。
VAR的主要步骤:
(个人拙见,不是标准模板)
选择合适的变量
Granger因果检验,进一步观察变量间的关联性,最好做双向检验,不过也有人说单向就足够了,这就人之间人智者见智了
选择VAR模型滞后阶数
拟合VAR模型
诊断性检验:包括系统平稳性检验、正态性检验、序列相关误差等
脉冲响应分析
方差分解
预测分析
各个步骤在R中的实现方法:
R中有个叫“vars”的package,主要用来做向量自回归分析,所以先安装并加载该包:
install.packages(vars)
library(vars)
1.选择变量
根据理论分析选择出相关联的变量,不多说。
2.Granger因果检验
vars包里面有个专门做格兰杰因果检验的函数:
causality(x, cause = NULL, vcov.=NULL, boot=FALSE, boot.runs=100)
另外还有一个适用于普通线性回归模型的Granger test的函数:
grangertest(x, y, order = 1, na.action = na.omit, ...)
这两个函数最直接的区别在于,第二个不用拟合VAR模型即可使用,而第一个必须在拟合VAR模型之后使用。
3.选择合适的滞后阶数
没有一个定论,主要是通过不同信息准则选择出合适的结果,且最好选择最简阶数(也就是最低阶数)。
相关函数:
VARselect(y, lag.max = 10, type = c("const", "trend", "both", "none"),
season = NULL, exogen = NULL)
函数会return一个结果,分别是根据AIC、HQ、SC、FPE四个信息准则得出的最优阶数。
4.拟合VAR模型
var(x, y = NULL, na.rm = FALSE, use)
5.诊断性检验
也就是检验模型的有效性。
系统平稳性:
stability(x, type = c("OLS-CUSUM", "Rec-CUSUM", "Rec-MOSUM",
"OLS-MOSUM", "RE", "ME", "Score-CUSUM", "Score-MOSUM",
"fluctuation"), h = 0.15, dynamic = FALSE, rescale = TRUE)
这里使用“OLS-CUSUM”,它给出的是残差累积和,在该检验生成的曲线图中,残差累积和曲线以时间为横坐标,图中绘出两条临界线,如果累积和超出了这两条临界线,则说明参数不具有稳定性。
结果如下图:
说明系统稳定。
正态性检验:
normality.test(x, multivariate.only = TRUE)
序列相关误差检验:
serial.test(x, lags.pt = 16, lags.bg = 5, type = c("PT.asymptotic",
"PT.adjusted", "BG", "ES") )
6.脉冲响应分析
脉冲响应分析,直白的来说就是对于某一内生变量对于残差冲击的反应。具体而言,他描述的是在随机误差项上施加一个标准差大小的冲击后对内生变量的当期值和未来值所产生的影响。
irf(x, impulse = NULL, response = NULL, n.ahead = 10,
ortho = TRUE, cumulative = FALSE, boot = TRUE, ci = 0.95,
runs = 100, seed = NULL, ...)
示例:
var<-VAR(timeseries,lag.max=2)
var.irf<-irf(var)
plot(var.irf)
结果:
解读:
标题栏说明,这是Y_ln对各个变量(包括Y_ln自身)的脉冲响应(impulse response),其中可以看出来自Y_ln的正向冲击,来自FDI_ln的正向冲击、来自INDUSTRY_ln的冲击不断减小到负向。其余变量的冲击较小。
7.方差分解
VAR模型的应用,还可以采用方差分解方法研究模型的动态特征。方差分解是进一步评价各内生变量对预测方差的贡献度。方差分解是分析预测残差的标准差由不同新息的冲击影响的比例,亦即对应内生变量对标准差的贡献比例。
fevd(x, n.ahead=10, ...)
示例:
var<-VAR(timeseries,lag.max=2)
fevd1<-fevd(var, n.ahead = 5)$Y_ln
结果:
Y_ln REER_ln M0_ln CPI_ln RETAIL_ln FDI_ln INDUSTRY_ln
[1,] 1.0000000 0.000000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000
[2,] 0.5660281 0.004363083 0.3085364 0.01686071 0.01356081 0.06509447 0.02555642
[3,] 0.5411924 0.009721985 0.2755711 0.01899613 0.07313395 0.05837871 0.02300568
[4,] 0.5259530 0.020262020 0.2783238 0.01870045 0.06689414 0.06883620 0.02103032
[5,] 0.5268243 0.036825419 0.2697744 0.01855353 0.06276992 0.06550223 0.01975014
解读:
例子中选取的是Y_ln变量的方差分解结果,如果不加‘$Y_ln’,则会return全部变量的结果。
最左边的是滞后期数,一共5期,结果表明当滞后期为1时,其自身对预测方差的贡献率为100%,用人话讲就是自身其变化。随着滞后期增加,Y_ln的贡献率下降,其他变量逐渐增加。不管怎么变化,每一行(也就是每一期)各个变量的贡献率之和都为1。
8.模型预测
没什么好说的,举例示之。
var.predict<-predict(var,n.ahead=3,ci=0.95)
var.predict
结果:
$Y_ln
fcst lower upper CI
[1,] 8.335729 8.208656 8.462802 0.1270727
[2,] 8.284560 8.076325 8.492795 0.2082349
[3,] 8.299723 8.078930 8.520516 0.2207930
fcst:点估计值
lower:区间估计下界
upper:区间估计上界
CI:置信区间
9.预测结果可视化
除了直接使用plot()函数绘图以外,vars包有一个fanchart()函数可以绘制扇形图,示意图:
总结:以上内容基本上实现了建立向量自回归模型,并进行分析所需的主要功能。至于更细分的点,就需要具体问题具体分析了。如文中有任何错误,请及时留言,谢谢
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28