
前面介绍了基于训练集训练SVM的方法。通过训练,算法能找到使间隔区间最大化的最优平面来分割训练数据集,得到SVM模型能够被用来预测新到样例的类别。
准备
使用之前构建的churn构建的model.
操作
利用已构建的SVM模型和测试数据集的属性预测它的模型
svm.pred = predict(model,testset[,!names(testset) %in% c("churn")])
svm.table = table(svm.pred,testset$churn)
svm.table
svm.pred yes no
yes 70 12
no 71 865
调用classAgreement计算分类一致性
classAgreement(svm.table)
$diag
[1] 0.9184676
$kappa
[1] 0.5855903
$rand
[1] 0.850083
$crand
[1] 0.5260472
调用confusionMatrix基于分类表评测预测性能
library(lattice)
library(ggplot2)
library(caret)
confusionMatrix(svm.table)
Confusion Matrix and Statistics
svm.pred yes no
yes 70 12
no 71 865
Accuracy : 0.9185
95% CI : (0.8999, 0.9345)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 1.251e-08
Kappa : 0.5856
Mcnemar's Test P-Value : 1.936e-10
Sensitivity : 0.49645
Specificity : 0.98632
Pos Pred Value : 0.85366
Neg Pred Value : 0.92415
Prevalence : 0.13851
Detection Rate : 0.06876
Detection Prevalence : 0.08055
Balanced Accuracy : 0.74139
'Positive' Class : yes
说明
本节首先调用predict函数获得测试数据集的预测模型,然后用table函数产生测试数据集的分类表,接下来的性能评测过程与前述章节其他方法其他分类方法的评测类似。
引入了一个新的函数classAgreement用来计算一个二维列联表行列之间多种一致性关系数。
diag系数为分类表主对角性上数据点的百分比,kappa系数是对diag系数随机一致性的修正,rand代表聚类评价指标(rand index),主要用来横量两个聚簇之间的相似性,crand系数是出现元素随机分类情况对Rand index 修正结果。
SVM回归分析
还可以使用SVM预测连续变量,也就是使用SVM实现回归分析。在接下来的样例中,我们使用名为eps-regression模型说明如何使用SVM执行回归分析。
使用Quartet数据集来训练一个支持向量机:
library(car)
data(Quartet)
model.regression = svm(Quartet$y1~Quartet$x,type = "eps-regression")
使用predict函数得到预测结果
predict.y = predict(model.regression,Quartet$x)
predict.y
调用plot绘图函数,预测值用正方形,训练数据用圆形:
plot(Quartet$x,Quartet$y1,pch = 19)
points(Quartet$x,predict.y,pch = 15,col = "red")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10