京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面介绍了基于训练集训练SVM的方法。通过训练,算法能找到使间隔区间最大化的最优平面来分割训练数据集,得到SVM模型能够被用来预测新到样例的类别。
准备
使用之前构建的churn构建的model.
操作
利用已构建的SVM模型和测试数据集的属性预测它的模型
svm.pred = predict(model,testset[,!names(testset) %in% c("churn")])
svm.table = table(svm.pred,testset$churn)
svm.table
svm.pred yes no
yes 70 12
no 71 865
调用classAgreement计算分类一致性
classAgreement(svm.table)
$diag
[1] 0.9184676
$kappa
[1] 0.5855903
$rand
[1] 0.850083
$crand
[1] 0.5260472
调用confusionMatrix基于分类表评测预测性能
library(lattice)
library(ggplot2)
library(caret)
confusionMatrix(svm.table)
Confusion Matrix and Statistics
svm.pred yes no
yes 70 12
no 71 865
Accuracy : 0.9185
95% CI : (0.8999, 0.9345)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 1.251e-08
Kappa : 0.5856
Mcnemar's Test P-Value : 1.936e-10
Sensitivity : 0.49645
Specificity : 0.98632
Pos Pred Value : 0.85366
Neg Pred Value : 0.92415
Prevalence : 0.13851
Detection Rate : 0.06876
Detection Prevalence : 0.08055
Balanced Accuracy : 0.74139
'Positive' Class : yes
说明
本节首先调用predict函数获得测试数据集的预测模型,然后用table函数产生测试数据集的分类表,接下来的性能评测过程与前述章节其他方法其他分类方法的评测类似。
引入了一个新的函数classAgreement用来计算一个二维列联表行列之间多种一致性关系数。
diag系数为分类表主对角性上数据点的百分比,kappa系数是对diag系数随机一致性的修正,rand代表聚类评价指标(rand index),主要用来横量两个聚簇之间的相似性,crand系数是出现元素随机分类情况对Rand index 修正结果。
SVM回归分析
还可以使用SVM预测连续变量,也就是使用SVM实现回归分析。在接下来的样例中,我们使用名为eps-regression模型说明如何使用SVM执行回归分析。
使用Quartet数据集来训练一个支持向量机:
library(car)
data(Quartet)
model.regression = svm(Quartet$y1~Quartet$x,type = "eps-regression")
使用predict函数得到预测结果
predict.y = predict(model.regression,Quartet$x)
predict.y
调用plot绘图函数,预测值用正方形,训练数据用圆形:
plot(Quartet$x,Quartet$y1,pch = 19)
points(Quartet$x,predict.y,pch = 15,col = "red")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07