
K最近邻属于一种分类算法,他的解释最容易,近朱者赤,近墨者黑,我们想看一个人是什么样的,看他的朋友是什么样的就可以了。当然其他还牵着到,看哪方面和朋友比较接近(对象特征),怎样才算是跟朋友亲近,一起吃饭还是一起逛街算是亲近(距离函数),根据朋友的优秀不优秀如何评判目标任务优秀不优秀(分类算法),是否不同优秀程度的朋友和不同的接近程度要考虑一下(距离权重),看几个朋友合适(k值),能否以分数的形式表示优秀度(概率分布)。
K最近邻概念:
它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
今天我们使用k最近邻算法来构建白酒的价格模型。
构造数据集
构建一个葡萄酒样本数据集。白酒的价格跟等级、年代有很大的关系。
from random import random,randint
import math
# 根据等级和年代对价格进行模拟
def wineprice(rating,age):
peak_age=rating-50
# 根据等级计算价格
price=rating/2
if age>peak_age:
# 经过“峰值年”,后续5年里其品质将会变差
price=price*(5-(age-peak_age)/2)
else:
# 价格在接近“峰值年”时会增加到原值的5倍
price=price*(5*((age+1)/peak_age))
if price<0: price=0
return price
# 生成一批模式数据代表样本数据集
def wineset1():
rows=[]
for i in range(300):
# 随机生成年代和等级
rating=random()*50+50
age=random()*50
# 得到一个参考价格
price=wineprice(rating,age)
# 添加一些噪音
price*=(random()*0.2+0.9)
# 加入数据集
rows.append({'input':(rating,age),'result':price})
return rows
数据间的距离
使用k最近邻,首先要知道那些最近邻,也就要求知道数据间的距离。我们使用欧几里得距离作为数据间的距离。
# 使用欧几里得距离,定义距离
def euclidean(v1,v2):
d=0.0
for i in range(len(v1)):
d+=(v1[i]-v2[i])**2
return math.sqrt(d)
获取与新数据距离最近的k个样本数据
# 计算给预测商品和原数据集中任一其他商品间的距离。data原数据集,vec1预测商品
def getdistances(data,vec1):
distancelist=[]
# 遍历数据集中的每一项
for i in range(len(data)):
vec2=data[i]['input']
# 添加距离到距离列表
distancelist.append((euclidean(vec1,vec2),i))
# 距离排序
distancelist.sort()
return distancelist #返回距离列表
根据距离最近的k个样本数据预测新数据的属性
1、简单求均值
# 对距离值最小的前k个结果求平均
def knnestimate(data,vec1,k=5):
# 得到经过排序的距离值
dlist=getdistances(data,vec1)
avg=0.0
# 对前k项结果求平均
for i in range(k):
idx=dlist[i][1]
avg+=data[idx]['result']
avg=avg/k
return avg
2、求加权平均
如果使用直接求均值,有可能存在前k个最近邻中,可能会存在距离很远的数据,但是他仍然属于最近的前K个数据。当存在这种情况时,对前k个样本数据直接求均值会有偏差,所以使用加权平均,为较远的节点赋予较小的权值,对较近的节点赋予较大的权值。
那么具体该怎么根据数据间距离分配权值呢?这里使用三种递减函数作为权值分配方法。
2.1、使用反函数为近邻分配权重。
def inverseweight(dist,num=1.0,const=0.1):
return num/(dist+const)
2.2、使用减法函数为近邻分配权重。当最近距离都大于const时不可用。
def subtractweight(dist,const=1.0):
if dist>const:
return 0
else:
return const-dist
2.3、使用高斯函数为距离分配权重。
def gaussian(dist,sigma=5.0):
return math.e**(-dist**2/(2*sigma**2))
有了权值分配方法,下面就可以计算加权平均了。
# 对距离值最小的前k个结果求加权平均
def weightedknn(data,vec1,k=5,weightf=gaussian):
# 得到距离值
dlist=getdistances(data,vec1)
avg=0.0
totalweight=0.0
# 得到加权平均
for i in range(k):
dist=dlist[i][0]
idx=dlist[i][1]
weight=weightf(dist)
avg+=weight*data[idx]['result']
totalweight+=weight
if totalweight==0: return 0
avg=avg/totalweight
return avg
第一次测试
上面完成了使用k最近邻进行新数据预测的功能,下面我们进行测试。
if __name__=='__main__': #只有在执行当前模块时才会运行此函数
data = wineset1() #创建第一批数据集
result=knnestimate(data,(95.0,3.0)) #根据最近邻直接求平均进行预测
print(result)
result=weightedknn(data,(95.0,3.0),weightf=inverseweight) #使用反函数做权值分配方法,进行加权平均
print(result)
result = weightedknn(data, (95.0, 3.0), weightf=subtractweight) # 使用减法函数做权值分配方法,进行加权平均
print(result)
result = weightedknn(data, (95.0, 3.0), weightf=gaussian) # 使用高斯函数做权值分配方法,进行加权平均
print(result)
交叉验证
交叉验证是用来验证你的算法或算法参数的好坏,比如上面的加权分配算法我们有三种方式,究竟哪个更好呢?我们可以使用交叉验证进行查看。
随机选择样本数据集中95%作为训练集,5%作为新数据,对新数据进行预测并与已知结果进行比较,查看算法效果。
要实现交叉验证,要实现将样本数据集划分为训练集和新数据两个子集的功能。
# 划分数据。test测试数据集占的比例。其他数据集为训练数据
def dividedata(data,test=0.05):
trainset=[]
testset=[]
for row in data:
if random()
else:
trainset.append(row)
return trainset,testset
还要能应用算法,计算预测结果与真实结果之间的误差度。
# 使用数据集对使用算法进行预测的结果的误差进行统计,一次判断算法好坏。algf为算法函数,trainset为训练数据集,testset为预测数据集
def testalgorithm(algf,trainset,testset):
error=0.0
for row in testset:
guess=algf(trainset,row['input']) #这一步要和样本数据的格式保持一致,列表内个元素为一个字典,每个字典包含input和result两个属性。而且函数参数是列表和元组
error+=(row['result']-guess)**2
#print row['result'],guess
#print error/len(testset)
return error/len(testset)
有了数据拆分和算法性能误差统计函数。我们就可以在原始数据集上进行多次这样的实验,统计平均误差。
# 将数据拆分和误差统计合并在一起。对数据集进行多次划分,并验证算法好坏
def crossvalidate(algf,data,trials=100,test=0.1):
error=0.0
for i in range(trials):
trainset,testset=dividedata(data,test)
error+=testalgorithm(algf,trainset,testset)
return error/trials
交叉验证测试
if __name__=='__main__': #只有在执行当前模块时才会运行此函数
data = wineset1() #创建第一批数据集
print(data)
error = crossvalidate(knnestimate,data) #对直接求均值算法进行评估
print('平均误差:'+str(error))
def knn3(d,v): return knnestimate(d,v,k=3) #定义一个函数指针。参数为d列表,v元组
error = crossvalidate(knn3, data) #对直接求均值算法进行评估
print('平均误差:' + str(error))
def knninverse(d,v): return weightedknn(d,v,weightf=inverseweight) #定义一个函数指针。参数为d列表,v元组
error = crossvalidate(knninverse, data) #对使用反函数做权值分配方法进行评估
print('平均误差:' + str(error))
不同类型、值域的变量、无用变量
在样本数据的各个属性中可能并不是取值范围相同的同类型的数据,比如上面的酒的属性可能包含档次(0-100),酒的年限(0-50),酒的容量(三种容量375.0ml、750.0ml、1500.0ml),甚至在我们获取的样本数据中还有可能包含无用的数据,比如酒生产的流水线号(1-20之间的整数)。在计算样本距离时,取值范围大的属性的变化会严重影响取值范围小的属性的变化,以至于结果会忽略取值范围小的属性。而且无用属性的变化也会增加数据之间的距离。
所以就要对样本数据的属性进行缩放到合适的范围,并要能删除无效属性。
构造新的数据集
# 构建新数据集,模拟不同类型变量的问题
def wineset2():
rows=[]
for i in range(300):
rating=random()*50+50 #酒的档次
age=random()*50 #酒的年限
aisle=float(randint(1,20)) #酒的通道号(无关属性)
bottlesize=[375.0,750.0,1500.0][randint(0,2)] #酒的容量
price=wineprice(rating,age) #酒的价格
price*=(bottlesize/750)
price*=(random()*0.2+0.9)
rows.append({'input':(rating,age,aisle,bottlesize),'result':price})
return rows
实现按比例对属性的取值进行缩放的功能
# 按比例对属性进行缩放,scale为各属性的值的缩放比例。
def rescale(data,scale):
scaleddata=[]
for row in data:
scaled=[scale[i]*row['input'][i] for i in range(len(scale))]
scaleddata.append({'input':scaled,'result':row['result']})
return scaleddata
那就剩下最后最后一个问题,究竟各个属性缩放多少呢。这是一个优化问题,我们可以通过优化技术寻找最优化解。而需要优化的成本函数,就是通过缩放以后进行预测的结果与真实结果之间的误差值。误差值越小越好。误差值的计算同前面交叉验证时使用的相同crossvalidate函数
下面构建成本函数
# 生成成本函数。闭包
def createcostfunction(algf,data):
def costf(scale):
sdata=rescale(data,scale)
return crossvalidate(algf,sdata,trials=10)
return costf
weightdomain=[(0,10)]*4 #将缩放比例这个题解的取值范围设置为0-10,可以自己设定,用于优化算法
优化技术的可以参看http://www.jb51.net/article/131719.htm
测试代码
if __name__=='__main__': #只有在执行当前模块时才会运行此函数
#========缩放比例优化===
data = wineset2() # 创建第2批数据集
print(data)
import optimization
costf=createcostfunction(knnestimate,data) #创建成本函数
result = optimization.annealingoptimize(weightdomain,costf,step=2) #使用退火算法寻找最优解
print(result)
不对称分布
对于样本数据集包含多种分布情况时,输出结果我们也希望不唯一。我们可以使用概率结果进行表示,输出每种结果的值和出现的概率。
比如葡萄酒有可能是从折扣店购买的,而样本数据集中没有记录这一特性。所以样本数据中价格存在两种形式的分布。
构造数据集
def wineset3():
rows=wineset1()
for row in rows:
if random()<0.5:
# 葡萄酒是从折扣店购买的
row['result']*=0.6
return rows
如果以结果概率的形式存在,我们要能够计算指定范围的概率值
# 计算概率。data样本数据集,vec1预测数据,low,high结果范围,weightf为根据距离进行权值分配的函数
def probguess(data,vec1,low,high,k=5,weightf=gaussian):
dlist=getdistances(data,vec1) #获取距离列表
nweight=0.0
tweight=0.0
for i in range(k):
dist=dlist[i][0] #距离
idx=dlist[i][1] #索引号
weight=weightf(dist) #权值
v=data[idx]['result'] #真实结果
# 当前数据点位于指定范围内么?
if v>=low and v<=high:
nweight+=weight #指定范围的权值之和
tweight+=weight #总的权值之和
if tweight==0: return 0
# 概率等于位于指定范围内的权重值除以所有权重值
return nweight/tweight
对于多种输出、以概率和值的形式表示的结果,我们可以使用累积概率分布图或概率密度图的形式表现。
绘制累积概率分布图
from pylab import *
# 绘制累积概率分布图。data样本数据集,vec1预测数据,high取值最高点,k近邻范围,weightf权值分配
def cumulativegraph(data,vec1,high,k=5,weightf=gaussian):
t1=arange(0.0,high,0.1)
cprob=array([probguess(data,vec1,0,v,k,weightf) for v in t1]) #预测产生的不同结果的概率
plot(t1,cprob)
show()
绘制概率密度图
# 绘制概率密度图
def probabilitygraph(data,vec1,high,k=5,weightf=gaussian,ss=5.0):
# 建立一个代表价格的值域范围
t1=arange(0.0,high,0.1)
# 得到整个值域范围内的所有概率
probs=[probguess(data,vec1,v,v+0.1,k,weightf) for v in t1]
# 通过加上近邻概率的高斯计算结果,对概率值做平滑处理
smoothed=[]
for i in range(len(probs)):
sv=0.0
for j in range(0,len(probs)):
dist=abs(i-j)*0.1
weight=gaussian(dist,sigma=ss)
sv+=weight*probs[j]
smoothed.append(sv)
smoothed=array(smoothed)
plot(t1,smoothed)
show()
测试代码
if __name__=='__main__': #只有在执行当前模块时才会运行此函数
data = wineset3() # 创建第3批数据集
print(data)
cumulativegraph(data,(1,1),120) #绘制累积概率密度
probabilitygraph(data,(1,1),6) #绘制概率密度图
以上就是本文的全部内容,希望对大家的学习有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18