python实现的二叉树算法和kmp算法实例
最近重温数据结构,又用python,所以就用python重新写了数据结构的一些东西,以下是二叉树的python写法
要是:前序遍历、中序遍历、后序遍历、层级遍历、非递归前序遍历、非递归中序遍历、非递归后序遍历
class TreeNode(object):
def __init__(self, data=None, left=None, right=None):
self.data = data
self.left = left
self.right = right
class Tree(object):
def __init__(self, root=None):
self.root = None
def makeTree(self, data, left, right):
self.root = TreeNode(data, left, right)
def is_empty(self):
"""是否为空 """
if self.root is None:
return True
return False
def preOrder(self, r):
"""前序遍历 """
if not r.is_empty():
print r.root.data
if r.root.left is not None:
r.preOrder(r.root.left)
if r.root.right is not None:
r.preOrder(r.root.right)
def inOrder(self, r):
"""中序遍历 """
if not r.is_empty():
if r.root.left is not None:
r.preOrder(r.root.left)
print r.root.data
if r.root.right is not None:
r.preOrder(r.root.right)
def postOrder(self, r):
"""后续遍历 """
if not r.is_empty():
if r.root.left is not None:
r.preOrder(r.root.left)
print r.root.data
if r.root.right is not None:
r.preOrder(r.root.right)
def levelOrder(self, r):
"""层级遍历 """
if not r.is_empty():
s = [r]
while len(s) > 0:
temp = s.pop(0) # 先弹出最先append到的点
if temp and temp.root is not None:
print temp.root.data
if temp.root.left is not None:
s.append(temp.root.left)
if self.root.right is not None:
s.append(temp.root.right)
def preOrder1(self, r):
"""非递归 前序遍历 """
stack = []
current = r
while len(stack) > 0 or (current and not current.is_empty()):
while current and not current.is_empty():
print current.root.data
stack.append(current)
current = current.root.left
if len(stack) > 0:
current = stack.pop()
current = current.root.right
def inOrder1(self, r):
"""非递归 中序遍历 """
stack = []
current = r
while len(stack) > 0 or (current and not current.is_empty()):
while current and not current.is_empty():
stack.append(current)
current = current.root.left
if len(stack) > 0:
current = stack.pop()
print current.root.data
current = current.root.right
def postOrder1(self, r):
"""非递归 后续遍历 """
stack = []
current = r
pre = None
while len(stack) > 0 or (current and not current.is_empty()):
if current and not current.is_empty():
stack.append(current)
current = current.root.left
elif stack[-1].root.right != pre:
current = stack[-1].root.right
pre = None
else:
pre = stack.pop()
print pre.root.data
def leaves_count(self, r):
"""求叶子节点个数 """
if r.is_empty():
return 0
elif (not r.root.left) and (not r.root.right):
return 1
else:
return r.root.left.leaves_count(r.root.left) + r.root.right.leaves_count(r.root.right)
if __name__ == '__main__':
"""二叉树"""
ra, rb, rc, rd, re, rf = Tree(), Tree(), Tree(), Tree(), Tree(), Tree()
ra.makeTree("a", None, None)
rb.makeTree("b", None, None)
rc.makeTree("c", None, None)
rd.makeTree("d", None, None)
re.makeTree("e", None, None)
rf.makeTree("f", None, None)
r1, r2, r3, r4, r = Tree(), Tree(), Tree(), Tree(), Tree()
r1.makeTree("-", rc, rd)
r2.makeTree("*", rb, r1)
r3.makeTree("+", ra, r2)
r4.makeTree("/", re, rf)
r.makeTree("-", r3, r4)
r.preOrder(r)
r.inOrder(r)
r.postOrder(r)
r.levelOrder(r)
print r.leaves_count(r)
大学的时候学过kmp算法,最近在看的时候发现竟然忘了,所以去重新看了看书,然后用python写下了这个算法:
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27