
特征选择是一个重要的数据预处理过程,获得数据之后要先进行特征选择然后再训练模型。主要作用:1、降维 2、去除不相关特征。
特征选择方法包含:子集搜索和子集评价两个问题。
子集搜索包含前向搜索、后向搜索、双向搜索等。
子集评价方法包含:信息增益,交叉熵,相关性,余弦相似度等评级准则。
两者结合起来就是特征选择方法,例如前向搜索与信息熵结合,显然与决策树很相似。
常见特征选择有三类方法:过滤式(filter),包裹式(wrapper)和嵌入式(embedding).————见周志华老师《机器学习》11章。
1. 过滤式(filter)
过滤式方法先对数据集进行特征选择,再训练学习器。两者分裂开来。Relief是一种著名的过滤式特征选择方法,设计了一种相关统计量来度量特征重要性。
sklearn模块中有一些特征选择的方法。
sklearn官方文档
(1)* Removing features with low variance*
特征筛选的时候,对于特征全0,全1 ,多数1,多数0的要删去。利用sklearn中模块,可如下操作(个人认为属于过滤式的)。
代码如下:
from sklearn.feature_selection import VarianceThreshold
X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
sel = VarianceThreshold(threshold=(.8 * (1 - .8))) #选择方差大于某个数的特征。
sel.fit_transform(X)
array([[0, 1],
[1, 0],
[0, 0],
[1, 1],
[1, 0],
[1, 1]])
(2)利用单变量特征选择(统计测试方法)。
Univariate feature selection works by selecting the best features based
on univariate statistical tests. It can be seen as a preprocessing step
to an estimator. Scikit-learn exposes feature selection routines as
objects that implement the transform method:
SelectKBest选择排名排在前n个的变量
SelectPercentile 选择排名排在前n%的变量
其他指标: false positive rate SelectFpr, false discovery rate SelectFdr, or family wise error SelectFwe 和 GenericUnivariateSelect。
对于regression问题:用f_regression函数。
对于classification问题:用chi2或者f_classif函数。
例如:利用 F-test for feature scoring
We use the default selection function: the 10% most significant features**
代码来源
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.feature_selection import SelectPercentile, f_classif
###############################################################################
# import some data to play with
# The iris dataset
iris = datasets.load_iris() #数据本身(150,4)
# Some noisy data not correlated
E = np.random.uniform(0, 0.1, size=(len(iris.data), 20))
#添加(150,20)的随机噪声
# Add the noisy data to the informative features
X = np.hstack((iris.data, E))
print X.shape #(150,24)维度
y = iris.target
###############################################################################
plt.figure(1)
plt.clf()
X_indices = np.arange(X.shape[-1])
###############################################################################
# Univariate feature selection with F-test for feature scoring
# We use the default selection function: the 10% most significant features
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(X, y)
scores = -np.log10(selector.pvalues_)
scores /= scores.max()
plt.bar(X_indices - .45, scores, width=.2,
label=r'Univariate score ($-Log(p_{value})$)', color='g')
###############################################################################
# Compare to the weights of an SVM
clf = svm.SVC(kernel='linear')
clf.fit(X, y)
svm_weights = (clf.coef_ ** 2).sum(axis=0)
svm_weights /= svm_weights.max()
plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r')
clf_selected = svm.SVC(kernel='linear')
clf_selected.fit(selector.transform(X), y)
svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0)
svm_weights_selected /= svm_weights_selected.max()
plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected,
width=.2, label='SVM weights after selection', color='b')
plt.title("Comparing feature selection")
plt.xlabel('Feature number')
plt.yticks(())
plt.axis('tight')
plt.legend(loc='upper right')
plt.show()
P值越小,显著性越高。负对数也越大。前4个有明显的显著性。(后20个无显著性)
2.包裹式(wrapper)
与过滤式机器学习不考虑后续学习器不同,包裹式特征选择直接把最终要使用的学习器性能作为特征子集的评价标准。由于包裹式特征选择的方法直接针对给定学习器进行优化,包裹式特征一般回避过滤式要好。LVW是一种典型的方法。采用随机策略搜索特征子集,而每次特征子集的评价都需要训练学习器,开销很大。
3.嵌入式(embedding)
嵌入式特征选择将特征选择过程和机器训练过程融合为一体。两者在同一优化过程中完成,即在学习器训练过程中自动进行了特征选择。
例如:L1正则化(Lasso,注意L2岭回归并不会降低维度)
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel
iris = load_iris()
X, y = iris.data, iris.target
X.shape
(150, 4)
lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
model = SelectFromModel(lsvc, prefit=True)
X_new = model.transform(X)
X_new.shape
(150, 3)
基于树的特征选取
对于树模型选择特征属于上面哪一种,感觉是包裹式,并不确定。
sklearn 提供例子:
class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2……)
分类标准 默认基尼系数,还可以设成信息熵增益。
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier
# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)
# Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,
random_state=0)
forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],
axis=0)
indices = np.argsort(importances)[::-1]
# Print the feature ranking
print("Feature ranking:")
for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
# Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],
color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()
特征重要性如图所示
上述的所有源于sklearn上的特征选取部分,细节[here]。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09