京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R并行方式对数值型数据离散化
数据的特征按照其取值可以分为连续型和离散型。离散数值属性在数据挖掘的过程中具有重要的作用。比如在信用卡评分模型中,当自变量很多时,并非所有字段对于目标字段来说都是有效的,因此通常的做法是通过计算woe值和iv值(类似于信息增益)来初步挑选通过对目标变量重要的字段,然后建模逻辑回归模型。而这当中就需要对数值型数据离散化。
数值型数据离散化通常分为有监督离散化和无监督离散化。考虑到数据建模通常是建立目标字段和其影响因素之间的关系的量化,因此会选择有监督离散化。
R语言中用于数值型数据离散化的包discretization。安装和加载如下:
>install.packages("discretization") >library(discretization)
以R自带数据集iris为例,以”Species” 为目标字段,对”Sepal.Length”、”Sepal.Width”、”Petal.Length” 、”Petal.Width” 四个数值型属性离散化。
>lisan_result <- mdlp(iris)
>class(lisan_result)
[1] “list”
>names(lisan_result)
[1] “cutp” “Disc.data”使用mdlp()方法对iris离散化,该方法默认数据框最后一列最后为目标字段。返回结果为列表。”cutp”为各列的分割点向量。”Disc.data”为离散化后的数据框。
该方法对于较小的样本量和维度时,程序运行时间还可以接受。但随着数据量的增大,数据维度的增加,程序运行时间会越来越长。因此考虑采用并行的方式对数据进行离散化。介绍R用于离散化的包parallel。
>install.packages(“parallel”)
>library(parallel)
>cores <- detectCores() ##查看本机虚拟核心数
> cores
[1] 4现在考虑以并行的方式实现离散化方法。考虑设计思路如下:
1.将字段10个为一组分别与目标字段组合成数据框,(不足10个时以实际数量字段与目标字段组合)存放在一个列表中。列表的元素即离散字段与目标字段构成的数据框。
2.启动M个附属进程,并初始化。M<=本机虚拟核心数。使用parLapply()作用于步骤1中建立的列表数据。此时既有M个附属进程对数据进行离散化。
3.将步骤2中的离散化结果合并。
4.将上述步骤封装成函数。整理后使得返回结果与mdlp()函数一致。这样方便调用。
将上述设计思路写成R代码,如下:输入离散数据、使用核心数,返回结果与使用mdlp()函数相同
parallel_lisan <- function(lisan_data,cores_num){
library(parallel)
library(discretization
res <- list()
lisan_data_v <- list()
cut_point <- list()
Disc.data <- data.frame(c(rep(NA,nrow(lisan_data))))name_num = ncol(lisan_data)-1 ##将原始数据分割成多列,先考虑每组10列。不足的单独分为一组。
group_num = floor(name_num/10)
last_group_num = name_num%%10
if( name_num > 10{ ##当原始数据列数多余10列
for(i in 1:group_num){
lw_flag <- lisan_data[,ncol(lisan_data)]
lisan_data_v[[i]] <- cbind(lisan_data[,(10*i-9):> (10*i)],lw_flag)
}
lisan_data_v[[group_num+1]] <- lisan_data[, (10*group_num+1):ncol(lisan_data)]
}else{
lisan_data_v[[group_num+1]] <- lisan_data[,(10*group_num+1):ncol(lisan_data)]
}
cl <- makeCluster(cores_num) ##初始化核心
results <- parLapply(cl,lisan_data_v,mdlp) ##对列表数据使用mdlp函数并行离散化
for(i in 1:length(results)){
for(j in 1:length(results[[i]][[1]])){
cut_point[[(i-1)*10+j]] <- results[[i]][[1]][[j]]
}
temp <- as.data.frame(results[[i]][[2]])
Disc.data <- cbind(Disc.data,temp[,1:(ncol(temp)-1)]) ##合并离散数据结果
}
Disc.data <- Disc.data[,2:ncol(Disc.data)]
Disc.data$lw_flag <- lisan_data[,ncol(lisan_data)]
names(Disc.data) <- names(lisan_data)
stopCluster(cl)
res[[“cutp”]] <- cut_point
res[[“Disc.data”]] <- Disc.data
return(res)
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06