
使用R并行方式对数值型数据离散化
数据的特征按照其取值可以分为连续型和离散型。离散数值属性在数据挖掘的过程中具有重要的作用。比如在信用卡评分模型中,当自变量很多时,并非所有字段对于目标字段来说都是有效的,因此通常的做法是通过计算woe值和iv值(类似于信息增益)来初步挑选通过对目标变量重要的字段,然后建模逻辑回归模型。而这当中就需要对数值型数据离散化。
数值型数据离散化通常分为有监督离散化和无监督离散化。考虑到数据建模通常是建立目标字段和其影响因素之间的关系的量化,因此会选择有监督离散化。
R语言中用于数值型数据离散化的包discretization。安装和加载如下:
>install.packages("discretization") >library(discretization)
以R自带数据集iris为例,以”Species” 为目标字段,对”Sepal.Length”、”Sepal.Width”、”Petal.Length” 、”Petal.Width” 四个数值型属性离散化。
>lisan_result <- mdlp(iris)
>class(lisan_result)
[1] “list”
>names(lisan_result)
[1] “cutp” “Disc.data”使用mdlp()方法对iris离散化,该方法默认数据框最后一列最后为目标字段。返回结果为列表。”cutp”为各列的分割点向量。”Disc.data”为离散化后的数据框。
该方法对于较小的样本量和维度时,程序运行时间还可以接受。但随着数据量的增大,数据维度的增加,程序运行时间会越来越长。因此考虑采用并行的方式对数据进行离散化。介绍R用于离散化的包parallel。
>install.packages(“parallel”)
>library(parallel)
>cores <- detectCores() ##查看本机虚拟核心数
> cores
[1] 4现在考虑以并行的方式实现离散化方法。考虑设计思路如下:
1.将字段10个为一组分别与目标字段组合成数据框,(不足10个时以实际数量字段与目标字段组合)存放在一个列表中。列表的元素即离散字段与目标字段构成的数据框。
2.启动M个附属进程,并初始化。M<=本机虚拟核心数。使用parLapply()作用于步骤1中建立的列表数据。此时既有M个附属进程对数据进行离散化。
3.将步骤2中的离散化结果合并。
4.将上述步骤封装成函数。整理后使得返回结果与mdlp()函数一致。这样方便调用。
将上述设计思路写成R代码,如下:输入离散数据、使用核心数,返回结果与使用mdlp()函数相同
parallel_lisan <- function(lisan_data,cores_num){
library(parallel)
library(discretization
res <- list()
lisan_data_v <- list()
cut_point <- list()
Disc.data <- data.frame(c(rep(NA,nrow(lisan_data))))name_num = ncol(lisan_data)-1 ##将原始数据分割成多列,先考虑每组10列。不足的单独分为一组。
group_num = floor(name_num/10)
last_group_num = name_num%%10
if( name_num > 10{ ##当原始数据列数多余10列
for(i in 1:group_num){
lw_flag <- lisan_data[,ncol(lisan_data)]
lisan_data_v[[i]] <- cbind(lisan_data[,(10*i-9):> (10*i)],lw_flag)
}
lisan_data_v[[group_num+1]] <- lisan_data[, (10*group_num+1):ncol(lisan_data)]
}else{
lisan_data_v[[group_num+1]] <- lisan_data[,(10*group_num+1):ncol(lisan_data)]
}
cl <- makeCluster(cores_num) ##初始化核心
results <- parLapply(cl,lisan_data_v,mdlp) ##对列表数据使用mdlp函数并行离散化
for(i in 1:length(results)){
for(j in 1:length(results[[i]][[1]])){
cut_point[[(i-1)*10+j]] <- results[[i]][[1]][[j]]
}
temp <- as.data.frame(results[[i]][[2]])
Disc.data <- cbind(Disc.data,temp[,1:(ncol(temp)-1)]) ##合并离散数据结果
}
Disc.data <- Disc.data[,2:ncol(Disc.data)]
Disc.data$lw_flag <- lisan_data[,ncol(lisan_data)]
names(Disc.data) <- names(lisan_data)
stopCluster(cl)
res[[“cutp”]] <- cut_point
res[[“Disc.data”]] <- Disc.data
return(res)
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26