京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R并行方式对数值型数据离散化
数据的特征按照其取值可以分为连续型和离散型。离散数值属性在数据挖掘的过程中具有重要的作用。比如在信用卡评分模型中,当自变量很多时,并非所有字段对于目标字段来说都是有效的,因此通常的做法是通过计算woe值和iv值(类似于信息增益)来初步挑选通过对目标变量重要的字段,然后建模逻辑回归模型。而这当中就需要对数值型数据离散化。
数值型数据离散化通常分为有监督离散化和无监督离散化。考虑到数据建模通常是建立目标字段和其影响因素之间的关系的量化,因此会选择有监督离散化。
R语言中用于数值型数据离散化的包discretization。安装和加载如下:
>install.packages("discretization") >library(discretization)
以R自带数据集iris为例,以”Species” 为目标字段,对”Sepal.Length”、”Sepal.Width”、”Petal.Length” 、”Petal.Width” 四个数值型属性离散化。
>lisan_result <- mdlp(iris)
>class(lisan_result)
[1] “list”
>names(lisan_result)
[1] “cutp” “Disc.data”使用mdlp()方法对iris离散化,该方法默认数据框最后一列最后为目标字段。返回结果为列表。”cutp”为各列的分割点向量。”Disc.data”为离散化后的数据框。
该方法对于较小的样本量和维度时,程序运行时间还可以接受。但随着数据量的增大,数据维度的增加,程序运行时间会越来越长。因此考虑采用并行的方式对数据进行离散化。介绍R用于离散化的包parallel。
>install.packages(“parallel”)
>library(parallel)
>cores <- detectCores() ##查看本机虚拟核心数
> cores
[1] 4现在考虑以并行的方式实现离散化方法。考虑设计思路如下:
1.将字段10个为一组分别与目标字段组合成数据框,(不足10个时以实际数量字段与目标字段组合)存放在一个列表中。列表的元素即离散字段与目标字段构成的数据框。
2.启动M个附属进程,并初始化。M<=本机虚拟核心数。使用parLapply()作用于步骤1中建立的列表数据。此时既有M个附属进程对数据进行离散化。
3.将步骤2中的离散化结果合并。
4.将上述步骤封装成函数。整理后使得返回结果与mdlp()函数一致。这样方便调用。
将上述设计思路写成R代码,如下:输入离散数据、使用核心数,返回结果与使用mdlp()函数相同
parallel_lisan <- function(lisan_data,cores_num){
library(parallel)
library(discretization
res <- list()
lisan_data_v <- list()
cut_point <- list()
Disc.data <- data.frame(c(rep(NA,nrow(lisan_data))))name_num = ncol(lisan_data)-1 ##将原始数据分割成多列,先考虑每组10列。不足的单独分为一组。
group_num = floor(name_num/10)
last_group_num = name_num%%10
if( name_num > 10{ ##当原始数据列数多余10列
for(i in 1:group_num){
lw_flag <- lisan_data[,ncol(lisan_data)]
lisan_data_v[[i]] <- cbind(lisan_data[,(10*i-9):> (10*i)],lw_flag)
}
lisan_data_v[[group_num+1]] <- lisan_data[, (10*group_num+1):ncol(lisan_data)]
}else{
lisan_data_v[[group_num+1]] <- lisan_data[,(10*group_num+1):ncol(lisan_data)]
}
cl <- makeCluster(cores_num) ##初始化核心
results <- parLapply(cl,lisan_data_v,mdlp) ##对列表数据使用mdlp函数并行离散化
for(i in 1:length(results)){
for(j in 1:length(results[[i]][[1]])){
cut_point[[(i-1)*10+j]] <- results[[i]][[1]][[j]]
}
temp <- as.data.frame(results[[i]][[2]])
Disc.data <- cbind(Disc.data,temp[,1:(ncol(temp)-1)]) ##合并离散数据结果
}
Disc.data <- Disc.data[,2:ncol(Disc.data)]
Disc.data$lw_flag <- lisan_data[,ncol(lisan_data)]
names(Disc.data) <- names(lisan_data)
stopCluster(cl)
res[[“cutp”]] <- cut_point
res[[“Disc.data”]] <- Disc.data
return(res)
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23