
使用R并行方式对数值型数据离散化
数据的特征按照其取值可以分为连续型和离散型。离散数值属性在数据挖掘的过程中具有重要的作用。比如在信用卡评分模型中,当自变量很多时,并非所有字段对于目标字段来说都是有效的,因此通常的做法是通过计算woe值和iv值(类似于信息增益)来初步挑选通过对目标变量重要的字段,然后建模逻辑回归模型。而这当中就需要对数值型数据离散化。
数值型数据离散化通常分为有监督离散化和无监督离散化。考虑到数据建模通常是建立目标字段和其影响因素之间的关系的量化,因此会选择有监督离散化。
R语言中用于数值型数据离散化的包discretization。安装和加载如下:
>install.packages("discretization") >library(discretization)
以R自带数据集iris为例,以”Species” 为目标字段,对”Sepal.Length”、”Sepal.Width”、”Petal.Length” 、”Petal.Width” 四个数值型属性离散化。
>lisan_result <- mdlp(iris)
>class(lisan_result)
[1] “list”
>names(lisan_result)
[1] “cutp” “Disc.data”使用mdlp()方法对iris离散化,该方法默认数据框最后一列最后为目标字段。返回结果为列表。”cutp”为各列的分割点向量。”Disc.data”为离散化后的数据框。
该方法对于较小的样本量和维度时,程序运行时间还可以接受。但随着数据量的增大,数据维度的增加,程序运行时间会越来越长。因此考虑采用并行的方式对数据进行离散化。介绍R用于离散化的包parallel。
>install.packages(“parallel”)
>library(parallel)
>cores <- detectCores() ##查看本机虚拟核心数
> cores
[1] 4现在考虑以并行的方式实现离散化方法。考虑设计思路如下:
1.将字段10个为一组分别与目标字段组合成数据框,(不足10个时以实际数量字段与目标字段组合)存放在一个列表中。列表的元素即离散字段与目标字段构成的数据框。
2.启动M个附属进程,并初始化。M<=本机虚拟核心数。使用parLapply()作用于步骤1中建立的列表数据。此时既有M个附属进程对数据进行离散化。
3.将步骤2中的离散化结果合并。
4.将上述步骤封装成函数。整理后使得返回结果与mdlp()函数一致。这样方便调用。
将上述设计思路写成R代码,如下:输入离散数据、使用核心数,返回结果与使用mdlp()函数相同
parallel_lisan <- function(lisan_data,cores_num){
library(parallel)
library(discretization
res <- list()
lisan_data_v <- list()
cut_point <- list()
Disc.data <- data.frame(c(rep(NA,nrow(lisan_data))))name_num = ncol(lisan_data)-1 ##将原始数据分割成多列,先考虑每组10列。不足的单独分为一组。
group_num = floor(name_num/10)
last_group_num = name_num%%10
if( name_num > 10{ ##当原始数据列数多余10列
for(i in 1:group_num){
lw_flag <- lisan_data[,ncol(lisan_data)]
lisan_data_v[[i]] <- cbind(lisan_data[,(10*i-9):> (10*i)],lw_flag)
}
lisan_data_v[[group_num+1]] <- lisan_data[, (10*group_num+1):ncol(lisan_data)]
}else{
lisan_data_v[[group_num+1]] <- lisan_data[,(10*group_num+1):ncol(lisan_data)]
}
cl <- makeCluster(cores_num) ##初始化核心
results <- parLapply(cl,lisan_data_v,mdlp) ##对列表数据使用mdlp函数并行离散化
for(i in 1:length(results)){
for(j in 1:length(results[[i]][[1]])){
cut_point[[(i-1)*10+j]] <- results[[i]][[1]][[j]]
}
temp <- as.data.frame(results[[i]][[2]])
Disc.data <- cbind(Disc.data,temp[,1:(ncol(temp)-1)]) ##合并离散数据结果
}
Disc.data <- Disc.data[,2:ncol(Disc.data)]
Disc.data$lw_flag <- lisan_data[,ncol(lisan_data)]
names(Disc.data) <- names(lisan_data)
stopCluster(cl)
res[[“cutp”]] <- cut_point
res[[“Disc.data”]] <- Disc.data
return(res)
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11