京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python越来越火了,Python 这几年的火热,离不开人工智能和机器学习。如果说 2017 年有一门最火“外语”,那一定是 Python。现在,Python 的这把火已经烧到了程序员的圈子外。根据国务院《新一代人工智能发展规划的通知》,可以想见人工智能教育往低幼渗透的例子只会越来越多。小学生学 Python 是培养编程兴趣和思维,为了你自己的百万年薪和发展前景,或许你才是最该学 Python 的人。

一:重大改革Python 将被加入高考科目
2017 年初消息,浙江省信息技术新教材,即将在 2017 级(2017 年 9 月入学)高中新生中开始使用。
浙江省信息技术课程改革方案已经出台,Python 确定进入浙江省信息技术高考,从 2018 年起浙江省信息技术教材编程语言将会从 VBA 更换为 Python。也就是说,Python 语言将纳入高考内容之一! 编程语言在升学中的比重逐渐加大,将要成为高考提分的一大利器。
编程语言在升学中的比重逐渐加大,其实不止浙江,教育大省北京和山东也确定要把 Python 编程基础纳入信息技术课程和高考的内容体系,Python 语言课程化也将成为孩子学习的一种趋势。
二:Python确认加入全国计算机等级考试
教育部考试中心于 2017 年 10 月 11 日发布了“关于全国计算机等级(NCRE)体系调整”的通知,决定自 2018 年 3 月起,在计算机二级考试加入了“Python 语言程序设计”科目。
三:Python的火爆在美国,连幼儿都有 Python 书
回想一下,微软创始人比尔·盖茨 13 岁学习编程,Facebook 创始人扎克伯格 11 岁开始学习编程……时代发展日新月异,小学生学编程早已不是新鲜事。现在,很多北京上海的家长开始给孩子做编程启蒙,各种编程培训机构也如火如荼。在美国,就连婴幼儿也有专门的编程童书。在亚马逊,你可以轻松买到婴幼儿 Python 编程书。
未来将是大数据和人工智能爆发的时代,到时将会有大量的数据需要处理,而 Python 对数据的处理,有着得天独厚的优势。我相信在未来,Python 会越来越火。未来是人工智能的时代,更是 Python 的时代。
四:吴恩达说写代码就跟识字一样,人人都需要
Python 势必成为人工智能时代的新宠儿,Python 这门学科也将引入大量的学习者,任何行业的成功人士当属那些先行者,人工智能的浪潮还未席卷,选择 Python 这门学科就是有先见之明。
实际上,关于学不学Python,吴恩达早有先见之明——在今年9月份回答Quora提问时,有网友问:“我女儿刚刚学会走路……我是否该在她会识字后就立马教她Python?”
吴恩达的回答非常肯定:是的,一定要教她写代码(code)!更重要的是,教会她持续学习的能力。
吴恩达认为,几乎每个人都应该学习编程,就像几乎每个人都该学习读写一样。所以,学习Python,做数据分析,跟语文、数学、游泳、开车一样,是通用技能。
五:大揭秘Python 语言为什么如此火爆?
在ranked.com的排名中,Python是2017年最受欢迎人工智能编程语言(第二是C++)。
根据Stack Overflow流量统计,2017年6月,Python第一次成为高收入国家Stack Overflow访问量最大的标签,照此发展,到了2018年,Python肯定会成为最受欢迎的标签。
在GitHub 2017年度报告中,Python超越Java成第二受欢迎语言。所有这些“刷榜”,都离不开最近人工智能尤其是机器学习的火热。Python被誉为最好人工智能的语言,因为:
• 在数据科学和AI中占据主导地位;
• 拥有优质的文档和丰富的库,对于科学用途的广泛编程任务都很有用;
• 设计非常好,快速,坚固,可移植,可扩展;
• 开源,而且拥有一个健康、活跃、支持度高的社区
• 有一些很棒的公司赞助商,YouTube、谷歌、Yahoo!、NASA都在内部大量地使用Python,尤其是谷歌;Facebook开源PyTorch后也更有利于Python的推广
【延生阅读】
如果你想了解Python在国内外的发展,同时你也想潜下心来学一点Python的真实技术,那么,我们为你整理了一些优质的资源,或许对你有所帮助。
(复制地址到电脑端或者手机端)
1. Python是如何成为了数据科学的发动机?
http://edu.cda.cn/open/course/13
2. 使用TensorFlow和Python进行深度学习(一)
http://edu.cda.cn/open/course/28
3. 使用TensorFlow和Python进行深度学习(二)
http://edu.cda.cn/open/course/29
4. CDA LEVEL II-Python数据挖掘体验课
http://edu.cda.cn/course/46
【好课推荐】
一、课程信息
时间:2017年12月23日~1月14日(3线下+2周线上)
地点:北京面授&上海远程 &全国直播
授课安排:现场班5900元 远程班4400元
【好课推荐】
一、课程信息
时间:2017年12月23日~1月14日(3线下+2周线上)
地点:北京面授&上海远程 &全国直播
授课安排:现场班5900元 远程班4400元
二、报名流程
1. 在线填写报名信息
官网端:https://www.cda.cn/kecheng/33.html(北京&上海远程&远程)
微信端:
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、课程大纲
第一阶段:[12.23]数据挖掘与Python入门
第二阶段:[12.24]数据挖掘模型与组合算法
第三阶段:[1.06]KNN与线性回归
第四阶段:[1.07]逻辑回归与SVM
第五阶段:[1.13]文本分析与社会网络分析
第六阶段:[1.14]综合案例分析
第七阶段:[线上选修]Mysql数据库基础知识 -(一周)
第八阶段:[线上选修]Tableau数据可视化 -(一周)
四、课程讲师
王小川
CDA数据分析师讲师/同济大学管理学博士
现就职于国内某大型券商研究所,从事量化投资相关工作,并承担了部分高校统计课程教学任务。长期研究机器学习在统计学中的应用,精通MATLAB、Python、SAS等统计软件,热衷数据分析和数据挖掘工作,有着扎实的理论基础和丰富的实战经验。著有《MATLAB神经网络30个案例分析》一书。
赵仁乾
CDA数据分析研究院讲师/京邮电大学管理科学与工程硕士
现就职于北京电信规划设计院,从事移动、联通集团及各省分公司市场、业务、财务规划、经济评价及运营咨询。重点研究方向包括离网用户挖掘、市场细分与精准营销、移动网络价值区域分析、潜在价值客户挖掘等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26