
智能投顾一线学员分享:用户DNA系统项目规划和思路
本文整理自智能投顾学员&群友项目交流第一期的内容,由诚壹金融科技数据产品经理刘吉静分享,主题为《用户DNA系统项目规划和思路》。
“智能投顾高级特训班”还在如火如荼持续报名中,课程分为基础、进阶、高级三个阶段,在第二阶段即将开始之前,AI慕课学院智能投顾群近期发起了项目分享活动,来自智能投顾从业者、投资人、银行产品经理等学员互相交流⾃⼰的学习经验,以及如何在学习课程的过程中解决实际问题。
以下为刘吉静的分享实录,编辑做了不改变原意的梳理:
学习心得
现在《智能投顾高级特训班之基础课程》已经结束,王蓁博士授课思路很清晰,也很详细,不仅对使用到的算法加以说明,还将推导过程进行了完整讲解,只要跟上王蓁博士的节奏,这些知识点能顺利地掌握。根据原课程安排,在雷锋网•AI慕课学院“智能投顾高级特训班”接下来的进阶课程中,王蓁博士将带来更加详细、实践化机器学习算法进阶的教程,手把手教你搭建专属的智能资产配置模型。同时,我对智能投顾进阶课程充满了期待,希望对接下来的框架讲解,也能顺利地掌握。
项目分享:用户DNA系统项目规划&思路
1、智能投顾:用户DNA系统
用户DNA系统是以用户为中心,整合多渠道信息,通过挖掘业务增长契机,实现数据驱动的精准运营。用户DNA系统主要由以下几模块构成:数据收集,收据整合,用户画像,个性化推荐和智能投顾。
(用户DNA系统落地方案框架)
(用户DNA系统落地步骤)
(1)通知系统:既能将用户的信息及行为反馈销售,又能协助我们完善用户信息。
(2)标签管理系统:实现标签的自动化配置及周期性计算。
(3)用户画像系统:DNA系统的桥梁,抽象出用户的平台价值全貌。
(4)用户提取:为营销活动、精准营销、用户挖掘与分析提供特定用户群的提取。
2、推荐系统模块
推荐服务首先需要采集(用户基本信息、用户行为信息)到离线存储,然后在离线环境下利用推荐算法进行用户和物品的匹配计算,找出每个用户可能感兴趣的物品集合。通过线下的推荐算法(属性、行为)找出用户感兴趣的产品后,不一定所有物品都可以推荐给用户,因此需要通过一个过滤过程。线下找出每个用户可能感兴趣的物品集合后,将这些预先计算好的结果推送到在线存储上,最终产品在有用户访问时通过在线API向推荐服务发起请求,获得该用户可能感兴趣的物品,完成推荐业务。加上推荐效果的检测与反馈,便完成一个推荐任务的完整流程。
3、推荐逻辑
(1)基于标签的冷启动推荐算法
离线状态下根据用户tag产出用户分组,及分组的推荐理财产品。当新用户注册时,根据新用户的tag,把用户归到相应的分组中,并获取分组的推荐结果。主要有:K-MEAS聚类和决策树分类。
(2)基于用户的协同过滤
收集用户行为信息,通过用户对产品的行为评分。如不同的用户对不同的作品有不同的评分(浏览、预约、参团、购买)而评分接近则意味着用户相近,便可判定为相似用户。收集了用户行为数据之后,接下来便要对数据进行减噪(去除错误信息)与归一化(权重与归一)操作,得到一个用户偏好的二维矩阵,一维是用户列表,另一维是物品列表,值是用户对物品的偏好,一般是 [0,1] 或者 [-1, 1] 的浮点数值。通过KNN找到相邻用户, 通过皮尔逊算法计算相似度,确定推荐结果。
4、智能投顾模块
智能投顾模块主要分为4个部分:智能投顾的流程、实现方案、市场分析、心得体会。
智能投顾的流程:用户画像(主观画像+客观画像),确定投资者类型,输出理财方案,针对理财方案,提出预期提示。
以下是我们操作的智能投顾实现方案。
方案一:确定投资者类型,输出理财方案,针对理财方案前期为人工操作,有了一定的数据积累之后,机器学习理财师的思路,机器进行上述步骤。而这种方案有一个凸显的问题,就是系统水平完全依赖理财师。
方案二:确定投资者类型,输出理财方案,针对理财方案通过算法,得出理财方案,不断调参,优化模型。这种方案适合中国本土的资产配置模型,算法工程师,wind 数据等。
方案三:基于用户的协同过滤算法,为相似的用户推荐相同的理财方案。
针对目前智能投顾市场,从数据源、产品思路、团队组织三个方面做分析——
首先,数据源方面,与其他互联网行业相比,金融领域可供机器学习的数据“珍贵有限”,我们只能从各个渠道尽可能地合理合法地获取各方数据信息,主要是:场景内数据,平台自身数据以及外部征信数据;其次,不管是人工智能,还是“人工+智能”,只要能够高效、低成本的为用户提供出高收益的理财方案,就是成功的系统;最后是团队组织职能。
专家点评
以下是《智能投顾高级特训班》主讲人王蓁博士对本期分享内容做的点评——
王蓁:首先非常感谢刘吉静女士的精彩分享。下面我就刘女士分享的内容谈谈自己的想法,如有不对,欢迎大家批评指正。
整体来说分享的内容很好,细节上,分享的智能投顾属于比较特定的构建投资组合环节,我个人认为智投端到端的一整套系统人工智能的应用上,美国的智能投顾和国内常见的智能投顾都是符合的,不过确实有真实应用人工智能技术的智能投顾,并且人工智能在智能投顾的具体应用不限于构建投资组合这一个环节,包括用户画像,择时选基等等,都是可以基于人工智能的。在我对中国银行实际项目的实施中,智能投顾实际上是包括了分享PPT中的全部流程。
在财富管理领域,分享PPT上阐述的用户画像还是大家努力的方向,但因为国内人才严重缺乏,现在商业化的主要都是简单问卷,这也一部分是监管的原因。
用户DNA系统页,这块部分分析得很好,在这里我补充一点。实际项目中,验证效果中你会发现很难验证,为什么?因为没有一个用户分类结果的标准答案。版本迭代,其中会涉及到大量的样本偏差和数据缺失的问题,也可以解决。这都是我在实际项目中碰到的真实困难。
推荐系统板块整体思路很好,其中推荐效果的检验方法,其实是使用了营销的体系,UV,PV,CPS等等类似指标,这样的好处是便于领导直观理解。但其中可能存在严重的ascertainment bias,数据和背后的逻辑可能不一致。其实还可以增加一项效果检验方法,推荐人物可以类比搜索的结果推荐,所以可以计算MAP,DCG等指标,具有很好的说服力。但背后引出一个问题,就是训练集的获取怎么做?也可以解决,比如通过半监督学习+小样本重复抽样获取。
整体PPT能看出是非常有框架的,是经过了大量的讨论后的结果,是一个比较完整的系统。因为系统庞大,所以其中项目实施(如果照着这个框架做)可能需要两三年甚至更长时间,而且要做好心理准备,预想的问题在实施中轻松解决了,而实际项目中碰到的问题,可能是之前完全没有预想到的。士不可以不弘毅,不忘初心。
王蓁博士课程推荐
点击阅读原文,或扫描下方二维码了解课程详情
大神一对一
想跟覃老师一对一交流?在学习中接受付老师的学习指导?更多交流互动请扫码添加小助手(不定期发放干货资料)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08