京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python装饰器与递归算法详解
1、python装饰器
刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了。总结了一下解释得比较好的,通俗易懂的来说明一下:
小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣:
def sum1():
sum = 1 + 2
print(sum)
sum1()
此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了:
import time
def sum1():
start = time.clock()
sum = 1+2
print(sum)
end = time.clock()
print("time used:",end - start)
sum1()
运行之后,完美~~
可是随着继续翻看,小P对越来越多的函数感兴趣了,都想看下他们的运行时间如何,难道要一个一个的去改函数吗?当然不是!我们可以考虑重新定义一个函数timeit,将sum1的引用传递给他,然后在timeit中调用sum1并进行计时,这样,我们就达到了不改动sum1定义的目的,而且,不论小P看了多少个函数,我们都不用去修改函数定义了!
import time
def sum1():
sum = 1+ 2
print (sum)
def timeit(func):
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
timeit(sum1)
咂一看,没啥问题,可以运行!但是还是修改了一部分代码,把sum1() 改成了timeit(sum1)。这样的话,如果sum1在N处都被调用了,你就不得不去修改这N处的代码。所以,我们就需要杨sum1()具有和timeit(sum1)一样的效果,于是将timeit赋值给sum1。可是timeit是有参数的,所以需要找个方法去统一参数,将timeit(sum1)的返回值(计算运行时间的函数)赋值给sum1。
import time
def sum1():
sum = 1+ 2
print (sum)
def timeit(func):
def test():
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
return test
sum1 = timeit(sum1)
sum1()
这样一个简易的装饰器就做好了,我们只需要在定义sum1以后调用sum1之前,加上sum1= timeit(sum1),就可以达到计时的目的,这也就是装饰器的概念,看起来像是sum1被timeit装饰了!Python于是提供了一个语法糖来降低字符输入量。
import time
def timeit(func):
def test():
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
return test
@timeit
def sum1():
sum = 1+ 2
print (sum)
sum1()
重点关注第11行的@timeit,在定义上加上这一行与另外写sum1 = timeit(sum1)完全等价。
2、递归算法
递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法解决问题的特点:
(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
举个栗子:对一个数字进行除2求值,直到小于等于1时退出并输出结果
def divide(n,val):
n += 1
print(val)
if val / 2 > 1:
aa = divide(n,val/2)
print('the num is %d,aa is %f' % (n,aa))
print('the num is %d,val is %f' % (n,val))
return(val)
divide(0,50.0)
结果说明(不return时相当于嵌套循环,一层层进入在一层层退出):
50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 5,val is 3.125000
the num is 4,aa is 3.125000
the num is 4,val is 6.250000
the num is 3,aa is 6.250000
the num is 3,val is 12.500000
the num is 2,aa is 12.500000
the num is 2,val is 25.000000
the num is 1,aa is 25.000000
the num is 1,val is 50.000000
2、递归时return:
def divide(n,val):
n += 1
print(val)
if val / 2 > 1:
aa = divide(n,val/2)
print('the num is %d,aa is %f' % (n,aa))
return(aa)
print('the num is %d,val is %f' % (n,val))
return(val)
divide(0,50.0)
结果说明(return时就直接结束本次操作):
50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 4,aa is 1.562500
the num is 3,aa is 1.562500
the num is 2,aa is 1.562500
the num is 1,aa is 1.562500
用递归实现斐波那契函数
def feibo(first,second,stop,list):
if first >= stop or second >= stop:
return list
else:
sum = first + second
list.append(sum)
if sum <= stop:
return feibo(second,sum,stop,list)
return list
if __name__ == '__main__':
first = int(raw_input('please input the first number:'))
second = int(raw_input('please input the second number:'))
stop = int(raw_input('please input the stop number:'))
l = [first,second]
a = feibo(first,second,stop,l)
print(a)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26