京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R之KNN算法
KNN(k-Nearest Neighbor)分类算法是数据挖掘分类技术中较简单的方法之一。所谓k最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
例如,上图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
KNN分类算法,是一个理论上比较成熟的方法,也是较简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。
KNN算法流程:
1. 准备数据,对数据进行预处理
2. 选用合适的数据结构存储训练数据和测试元组
3. 设定参数,如k
4. 维护一个大小为k的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取k个元组作为初始的最近邻元组,分别计算测试元组到这k个元组的距离,将训练元组标号和距离存入优先级队列
5. 遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L与优先级队列中的最大距离Lmax
6. 进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L < Lmax,删除优先级队列中最大距离的元组,将当前训练元组存入优先级队列。
7. 遍历完毕,计算优先级队列中k个元组的多数类,并将其作为测试元组的类别。
8. 测试元组集测试完毕后计算误差率,继续设定不同的k值重新进行训练,最后取误差率最小的k值。
KNN算法优点:
1. 简单,易于理解,易于实现,无需估计参数,无需训练;
2. 适合对稀有事件进行分类;
3. 特别适合于多分类问题(multi-modal,对象具有多个类别标签),kNN比SVM的表现要好;
KNN算法缺点:
1. 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果;
2. 计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点;
3. 可理解性差,无法给出像决策树那样的规则;
R语言中有kknn的package实现了weighted k-nearest neighbor,用法如下:
kknn(formula = formula(train), train, test, na.action = na.omit(), k = 7, distance = 2, kernel = "optimal", ykernel = NULL, scale=TRUE, contrasts = c('unordered' = "contr.dummy", ordered = "contr.ordinal"))
参数:
formula A formula object.
train Matrix or data frame of training set cases.
test Matrix or data frame of test set cases.
na.action A function which indicates what should happen when the data contain ’NA’s.
k Number of neighbors considered.
distance Parameter of Minkowski distance.
kernel Kernel to use. Possible choices are
"rectangular" (which is standard unweighted knn),
"triangular",
"epanechnikov" (or beta(2,2)),
"biweight" (or beta(3,3)),
"triweight" (or beta(4,4)),
"cos",
"inv",
"gaussian",
"rank"
"optimal".
ykernel Window width of an y-kernel, especially for prediction of ordinal classes.
scale Logical, scale variable to have equal sd.
contrasts A vector containing the 'unordered' and 'ordered' contrasts to use
kknn的返回值如下:
fitted.values Vector of predictions.
CL Matrix of classes of the k nearest neighbors.
W Matrix of weights of the k nearest neighbors.
D Matrix of distances of the k nearest neighbors.
C Matrix of indices of the k nearest neighbors.
prob Matrix of predicted class probabilities.
response Type of response variable, one of continuous, nominal or ordinal.
distance Parameter of Minkowski distance.
call The matched call.
terms The 'terms' object used.
class包中的knn()函数提供了一个标准的kNN算法实现,用法如下:
knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)
参数:
train matrix or data frame of training set cases.
test matrix or data frame of test set cases. A vector will be interpreted as a row vector for a single case.
cl factor of true classifications of training set
k number of neighbours considered.
l minimum vote for definite decision, otherwise doubt. (More precisely, less than k-l dissenting votes are allowed, even if k is increased by ties.)
prob If this is true, the proportion of the votes for the winning class are returned as attribute prob.
use.all controls handling of ties. If true, all distances equal to the kth largest are included. If false, a random selection of distances equal to the kth is chosen to use exactly k neighbours.
kknn的返回值如下:
Factor of classifications of test set. doubt will be returned as NA.
实例1:
> library(kknn)
> data(iris)
> m <- dim(iris)[1]
> val <- sample(1:m, size = round(m/3), replace = FALSE, prob = rep(1/m, m)) # 选取采样数据
> iris.learn <- iris[-val,] # 建立训练数据
> iris.valid <- iris[val,] # 建立测试数据
# 调用kknn,formula Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> iris.kknn <- kknn(Species~., iris.learn, iris.valid, distance = 1, kernel = "triangular")
> summary(iris.kknn)
> fit <- fitted(iris.kknn) # 获取fitted.values
> table(iris.valid$Species, fit) # 建立表格检验判类准确性
> pcol <- as.character(as.numeric(iris.valid$Species))
> pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red")[(iris.valid$Species != fit)+1])
实例2:
使用UCI机器学习数据仓库(UCI Machine Learning Repository)的“威斯康星乳腺癌诊断”(Breast Cancer Wisconsin Diagnostic)的数据集,该数据集可以从网站https://archive.ics.uci.edu/ml/获得。乳腺癌数据包括569例细胞活检案例,每个案例32个特征。
0. 准备数据
> wbcd<-read.csv('wdbc.data',stringsAsFactors = FALSE)
> str(wbcd)
> wbcd<-wbcd[-1]
> table(wbcd$diagnosis)
> wbcd$diagnosis<-factor(wbcd$diagnosis,levels=c('B','M'),labels=c('Begin','Malignant'))
> round(prop.table(table(wbcd$diagnosis))*100, digits=1)
1. 转换-min-max标准化数值型数据
> normalize <-function(x){
+ return( (x-min(x)) / (max(x)-min(x)) )
+ }
> wbcd_n <-as.data.frame(lapply(wbcd[2:31],normalize))
> #summary(wbcd_n$mqj1)
2. 数据准备-创建训练集和测试集
> wbcd_train <- wbcd_n[1:469,]
> wbcd_test <- wbcd_n[470:569,]
> wbcd_train_labels <- wbcd[1:469,1]
> wbcd_test_labels <- wbcd[470:569,1]
3. 训练模型
> install.packages('class')
> library(class)
> wbcd_test_pred <-knn(train=wbcd_train, test=wbcd_test, cl=wbcd_train_labels, k=21)
4. 评估性能
> install.packages('gmodels')
> library(gmodels)
> CrossTable(x=wbcd_test_labels, y=wbcd_test_pred, prop.chisq = FALSE)
5. 提高模型的性能
5.1 Z-score标准化
> wbcd_z <-as.data.frame(scale(wbcd[-1]))
> wbcd_train <- wbcd_z[1:469,]
> wbcd_test <- wbcd_z[470:569,]
> wbcd_train_labels <- wbcd[1:469,1]
> wbcd_test_labels <- wbcd[470:569,1]
> wbcd_test_pred <-knn(train=wbcd_train, test=wbcd_test, cl=wbcd_train_labels, k=21)
> CrossTable(x=wbcd_test_labels, y=wbcd_test_pred, prop.chisq = FALSE)
5.2 测试其他的K值
变换K的大小,测试假阴性和假阳性。尽量避免假阴性,但是会以增加假阳性代价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24