京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R之KNN算法
KNN(k-Nearest Neighbor)分类算法是数据挖掘分类技术中较简单的方法之一。所谓k最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
例如,上图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。
KNN分类算法,是一个理论上比较成熟的方法,也是较简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。
KNN算法流程:
1. 准备数据,对数据进行预处理
2. 选用合适的数据结构存储训练数据和测试元组
3. 设定参数,如k
4. 维护一个大小为k的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取k个元组作为初始的最近邻元组,分别计算测试元组到这k个元组的距离,将训练元组标号和距离存入优先级队列
5. 遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L与优先级队列中的最大距离Lmax
6. 进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L < Lmax,删除优先级队列中最大距离的元组,将当前训练元组存入优先级队列。
7. 遍历完毕,计算优先级队列中k个元组的多数类,并将其作为测试元组的类别。
8. 测试元组集测试完毕后计算误差率,继续设定不同的k值重新进行训练,最后取误差率最小的k值。
KNN算法优点:
1. 简单,易于理解,易于实现,无需估计参数,无需训练;
2. 适合对稀有事件进行分类;
3. 特别适合于多分类问题(multi-modal,对象具有多个类别标签),kNN比SVM的表现要好;
KNN算法缺点:
1. 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果;
2. 计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点;
3. 可理解性差,无法给出像决策树那样的规则;
R语言中有kknn的package实现了weighted k-nearest neighbor,用法如下:
kknn(formula = formula(train), train, test, na.action = na.omit(), k = 7, distance = 2, kernel = "optimal", ykernel = NULL, scale=TRUE, contrasts = c('unordered' = "contr.dummy", ordered = "contr.ordinal"))
参数:
formula A formula object.
train Matrix or data frame of training set cases.
test Matrix or data frame of test set cases.
na.action A function which indicates what should happen when the data contain ’NA’s.
k Number of neighbors considered.
distance Parameter of Minkowski distance.
kernel Kernel to use. Possible choices are
"rectangular" (which is standard unweighted knn),
"triangular",
"epanechnikov" (or beta(2,2)),
"biweight" (or beta(3,3)),
"triweight" (or beta(4,4)),
"cos",
"inv",
"gaussian",
"rank"
"optimal".
ykernel Window width of an y-kernel, especially for prediction of ordinal classes.
scale Logical, scale variable to have equal sd.
contrasts A vector containing the 'unordered' and 'ordered' contrasts to use
kknn的返回值如下:
fitted.values Vector of predictions.
CL Matrix of classes of the k nearest neighbors.
W Matrix of weights of the k nearest neighbors.
D Matrix of distances of the k nearest neighbors.
C Matrix of indices of the k nearest neighbors.
prob Matrix of predicted class probabilities.
response Type of response variable, one of continuous, nominal or ordinal.
distance Parameter of Minkowski distance.
call The matched call.
terms The 'terms' object used.
class包中的knn()函数提供了一个标准的kNN算法实现,用法如下:
knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)
参数:
train matrix or data frame of training set cases.
test matrix or data frame of test set cases. A vector will be interpreted as a row vector for a single case.
cl factor of true classifications of training set
k number of neighbours considered.
l minimum vote for definite decision, otherwise doubt. (More precisely, less than k-l dissenting votes are allowed, even if k is increased by ties.)
prob If this is true, the proportion of the votes for the winning class are returned as attribute prob.
use.all controls handling of ties. If true, all distances equal to the kth largest are included. If false, a random selection of distances equal to the kth is chosen to use exactly k neighbours.
kknn的返回值如下:
Factor of classifications of test set. doubt will be returned as NA.
实例1:
> library(kknn)
> data(iris)
> m <- dim(iris)[1]
> val <- sample(1:m, size = round(m/3), replace = FALSE, prob = rep(1/m, m)) # 选取采样数据
> iris.learn <- iris[-val,] # 建立训练数据
> iris.valid <- iris[val,] # 建立测试数据
# 调用kknn,formula Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> iris.kknn <- kknn(Species~., iris.learn, iris.valid, distance = 1, kernel = "triangular")
> summary(iris.kknn)
> fit <- fitted(iris.kknn) # 获取fitted.values
> table(iris.valid$Species, fit) # 建立表格检验判类准确性
> pcol <- as.character(as.numeric(iris.valid$Species))
> pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red")[(iris.valid$Species != fit)+1])
实例2:
使用UCI机器学习数据仓库(UCI Machine Learning Repository)的“威斯康星乳腺癌诊断”(Breast Cancer Wisconsin Diagnostic)的数据集,该数据集可以从网站https://archive.ics.uci.edu/ml/获得。乳腺癌数据包括569例细胞活检案例,每个案例32个特征。
0. 准备数据
> wbcd<-read.csv('wdbc.data',stringsAsFactors = FALSE)
> str(wbcd)
> wbcd<-wbcd[-1]
> table(wbcd$diagnosis)
> wbcd$diagnosis<-factor(wbcd$diagnosis,levels=c('B','M'),labels=c('Begin','Malignant'))
> round(prop.table(table(wbcd$diagnosis))*100, digits=1)
1. 转换-min-max标准化数值型数据
> normalize <-function(x){
+ return( (x-min(x)) / (max(x)-min(x)) )
+ }
> wbcd_n <-as.data.frame(lapply(wbcd[2:31],normalize))
> #summary(wbcd_n$mqj1)
2. 数据准备-创建训练集和测试集
> wbcd_train <- wbcd_n[1:469,]
> wbcd_test <- wbcd_n[470:569,]
> wbcd_train_labels <- wbcd[1:469,1]
> wbcd_test_labels <- wbcd[470:569,1]
3. 训练模型
> install.packages('class')
> library(class)
> wbcd_test_pred <-knn(train=wbcd_train, test=wbcd_test, cl=wbcd_train_labels, k=21)
4. 评估性能
> install.packages('gmodels')
> library(gmodels)
> CrossTable(x=wbcd_test_labels, y=wbcd_test_pred, prop.chisq = FALSE)
5. 提高模型的性能
5.1 Z-score标准化
> wbcd_z <-as.data.frame(scale(wbcd[-1]))
> wbcd_train <- wbcd_z[1:469,]
> wbcd_test <- wbcd_z[470:569,]
> wbcd_train_labels <- wbcd[1:469,1]
> wbcd_test_labels <- wbcd[470:569,1]
> wbcd_test_pred <-knn(train=wbcd_train, test=wbcd_test, cl=wbcd_train_labels, k=21)
> CrossTable(x=wbcd_test_labels, y=wbcd_test_pred, prop.chisq = FALSE)
5.2 测试其他的K值
变换K的大小,测试假阴性和假阳性。尽量避免假阴性,但是会以增加假阳性代价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29