
人们将面临大数据无法进行预测分析挑战
你是否认为大数据时代会有足够多的信息来支持建立强大分析,其实不然。有的情况中即便大量数据也不能保证基本预测的正常运行。多数时间,我们没有做到更多的事,所以只能默默承受这事实坚持最基本的。这是为什么我们要讨论当面临大数据不能预测分析未来的挑战时的情况。
场景一
以某家航空公司制造商举例,事物很少却有大量数据就难找到有意义的模式。运行的飞机每小时产生数据可达千兆字节,发动机在不同条件下操作,分析操作数据好处很多。像是预测性维护,对于分析行为来说或许困难。
在考虑不同模型的时候,一年中可能只有几十个模型被生产出来。纵使飞机全部装满传感器,也很难开发有意义的预测部件故障模型。因为只有几十或几百架飞机,样品的数量太小。对于新飞机来说,会加剧问题出现几率。尽管收集了PB的数据,但没有足够大事件池,有效预测模型就不能真正构建。不过数据是可以监测,但并不是预测模式。
情景二
大量的事物和人需要分析大量数据。出现罕见的事件时,会遇到没有足够的样本来构建真正有效的预测模型。并不是分析数据和理解行为各方面没有很多价值。
再看计算机芯片的生产。全球每年产生数亿甚至数十亿片芯片,并且其速度在不断加快。几十年前,一千个或一万个的数量级缺陷可能是可以接受的。对于当今的芯片产品,其缺陷可能需要更接近百万级。曾经有客户提出,汽车行业面临着压力,需要将芯片缺陷率降低到十亿分之一或更低。因为如果实现这种低错误率,并且人们可以假设导致有缺陷芯片存在的原因,则对于任何特定的一组原因,其发生任何缺陷的实例会变少,人们可能没有足够的样本来分析,但能够产生良好的模型以预测这些失败可能发生的时间和地点。人们考虑到芯片技术将随着时间的推移而过时,在短短几年内被更新的产品所替代,因此,这可能是一个持续时间比较久的问题。
然而这只是样本。随着数据来源越来越多,企业用多个因素分析业务,异常样本出现在组织内部。人们只需关注一个小的宇宙来分析,或者通过一个令人难以置信的稀有事件来分析。更糟糕的是,这种罕见事件是小宇宙中的。假设只考虑数据与业务问题相关的情况,而那些不相关的数据将永远不会增加价值,无论其数量多么大或多么小。
当人们不确定自己的数据是否是有效预测时,请确保在用于开发数据的复杂分析之前投入更多精力,其评估可能是可行的。在某些情况下,人们可能需要解决基本分析问题。然而,重要的是要记住,这种情况应该比没有任何数据来分析更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28