
针对SAS用户:Python数据分析库pandas
这篇文章是Randy Betancourt的用于SAS用户的快速入门中的一章。Randy编写这本指南,让SAS用户熟悉Python和Python的各种科学计算工具。
本文包括的主题:
导入包
读.csv文件
检查
处理缺失数据
缺失数据监测
缺失值替换
资源
pandas简介
本章介绍pandas库(或包)。pandas为 Python开发者提供高性能、易用的数据结构和数据分析工具。该包基于NumPy(发音‘numb pie’)中,一个基本的科学计算包,提供ndarray,一个用于数组运算的高性能对象。我们将说明一些有用的NumPy对象来作为说明pandas的方式。
对于数据分析任务,我们经常需要将不同的数据类型组合在一起。一个例子是使用频率和计数的字符串对分类数据进行分组,使用int和float作为连续值。此外,我们希望能够附加标签到列、透视数据等。
我们从介绍对象Series和DataFrame开始。可以认为Series是一个索引、一维数组、类似一列值。可以认为DataFrames是包含行和列的二维数组索引。好比Excel单元格按行和列位置寻址。
换句话说,DataFrame看起来很像SAS数据集(或关系表)。下表比较在SAS中发现的pandas组件。
第6章,理解索引中详细地介绍DataFrame和Series索引。
导入包
为了使用pandas对象, 或任何其它Python包的对象,我们开始按名称导入库到命名空间。为了避免重复键入完整地包名,对NumPy使用np的标准别名,对pandas使用pd。
可以认为Series是含标记的一维数组。这个结构包括用于定位数据键值的标签索引。Series 中的数据可以是任何数据类型。pandas数据类型的详情见这里。在SAS例子中,我们使用Data StepARRAYs类同于Series。
以创建一个含随机值的Series开始:
注意:索引从0开始。大部分SAS自动变量像_n_使用1作为索引开始位置。SAS迭代DO loop 0 to 9结合ARRAY产生一个数组下标超出范围错误。
下面的SAS例子,DO循环用于迭代数组元素来定位目标元素。
SAS中数组主要用于迭代处理如变量。SAS/IML更接近的模拟NumPy数组。但SAS/IML 在这些示例的范围之外。
一个Series可以有一个索引标签列表。
Series由整数值索引,并且起始位置是0。
SAS示例使用一个DO循环做为索引下标插入数组。
返回Series中的前3个元素。
该示例有2个操作。s2.mean()方法计算平均值,随后一个布尔测试小于计算出的平均值。
Series和其它有属性的对象,它们使用点(.)操作符。.name是Series对象很多属性中的一个。
如前所述,DataFrames是带有标签的关系式结构。此外,一个单列的DataFrame是一个Series。
像SAS一样,DataFrames有不同的方法来创建。可以通过加载其它Python对象的值创建DataFrames。数据值也可以从一系列非Python输入资源加载,包括.csv文件、DBMS表、网络API、甚至是SAS数据集(.sas7bdat)等等。具体细节讨论见第11章— pandas Readers。
从读取UK_Accidents.csv文件开始。该文件包括从2015年1月1日到2015年12月31日香港的车辆事故数据。.csv文件位于这里。
一年中的每一天都有很多报告, 其中的值大多是整数。另一个.CSV文件在这里,将值映射到描述性标签。
读.csv文件
在下面的示例中使用默认值。pandas为许多读者提供控制缺失值、日期解析、跳行、数据类型映射等参数。这些参数类似于SAS的INFILE/INPUT处理。
注意额外的反斜杠\来规范化Windows路径名。
PROC IMPORT用于读取同一个.csv文件。它是SAS读.csv文件的几个方法之一。这里我们采用默认值。
与SAS不同,Python解释器正常执行时主要是静默的。调试时,调用方法和函数返回有关这些对象的信息很有用。这有点类似于在SAS日志中使用PUT来检查变量值。
下面显示了size、shape和ndim属性(分别对应于,单元格个数、行/列、维数)。
读校验
读取一个文件后,常常想了解它的内容和结构。.info()方法返回DataFrame的属性描述。
在SASPROC CONTENTS的输出中,通常会发现同样的信息。
检查
pandas有用于检查数据值的方法。DataFrame的.head()方法默认显示前5行。.tail()方法默认显示最后5行。行计数值可以是任意整数值,如:
SAS使用FIRSTOBS和OBS选项按照程序来确定输入观察数。SAS代码打印uk_accidents数据集的最后20个观察数:
5 rows × 27 columns
OBS=n在SAS中确定用于输入的观察数。
PROC PRINT的输出在此处不显示。
下面的单元格显示的是范围按列的输出。列列表类似于PROCPRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。方括号[]是切片操作符。这里解释细节。
注意DataFrame的默认索引(从0增加到9)。这类似于SAS中的自动变量n。随后,我们使用DataFram中的其它列作为索引说明这。
下面是SAS程序打印一个带Sec_of_Driver和Time变量的数据集的前10个观察数。
PROC PRINT的输出在此处不显示。
处理缺失数据
在分析数据之前,一项常见的任务是处理缺失数据。Pandas使用两种设计来表示缺失数据,NaN(非数值)和PythonNone对象。
下面的单元格使用PythonNone对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。可惜的是,对一个聚合函数使用PythonNone对象引发一个异常。
为了减轻上述错误的发生,在下面的数组例子中使用np.nan(缺失数据指示符)。也要注意Python如何为数组选择浮点数(或向上转型)。
并不是所有使用NaN的算数运算的结果是NaN。
对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。SAS排除缺失值,并且利用剩余数组元素来计算平均值。
缺失值的识别
回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。它们是:
下面我们将详细地研究每个方法。
解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。
这可以沿着下面的输出单元格中的示例行。df.columns返回DataFrame中的列名称序列。
虽然这给出了期望的结果,但是有更好的方法。
另外,如果你发现自己想使用迭代处理来解决一个pandas操作(或Python),停下来,花一点时间做研究。可能方法或函数已经存在!
案例如下所示。它将.sum()属性链接到.isnull()属性来返回DataFrame中列的缺失值的计数。
.isnull()方法对缺失值返回True。通过将.sum()方法链接到.isnull()方法,它会生成每个列的缺失值的计数。
为了识别缺失值,下面的SAS示例使用PROC格式来填充缺失和非缺失值。缺失值对于数值默认用(.)表示,而字符串变量用空白(‘ ‘)表示。因此,两种类型都需要用户定义的格式。
PROC FREQ与自变量_CHARACTER_和_NUMERIC_一起使用,为每个变量类型生成频率列表。
由于为每个变量产生单独的输出,因此仅显示SAS输出的一部分。与上面的Pythonfor循环示例一样,变量time是唯一有缺失值的变量。
用于检测缺失值的另一种方法是通过对链接属性.isnull().any()使用axis=1参数逐列进行搜索。
5 rows × 27 columns
缺失值替换
下面的代码用于并排呈现多个对象。它来自Jake VanderPlas的使用数据的基本工具。它显示对象更改“前”和“后”的效果。
为了说明.fillna()方法,请考虑用以下内容来创建DataFrame。
默认情况下,.dropna()方法删除其中找到任何空值的整个行或列。
.dropna()方法也适用于列轴。axis = 1和axis = "columns"是等价的。
显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。
可以插入或替换缺失值,而不是删除行和列。.fillna()方法返回替换空值的Series或DataFrame。下面的示例将所有NaN替换为零。
正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。该方法应用于使用.loc方法的目标列列表。第05章–了解索引中讨论了.loc方法的详细信息。
基于df["col6"]的平均值的填补方法如下所示。.fillna()方法查找,然后用此计算值替换所有出现的NaN。
相应的SAS程序如下所示。PROC SQL SELECT INTO子句将变量col6的计算平均值存储到宏变量&col6_mean中。这之后是一个数据步骤,为col3 - col5迭代数组x ,并用&col6_mean替换缺失值。
SAS/Stat具有用于使用这里描述的一系列方法来估计缺失值的PROC MI。PROC MI在这些示例的范围之外。
.fillna(method="ffill")是一种“前向”填充方法。NaN被上面的“下”列替换为相邻单元格。下面的单元格将上面创建的DataFramedf2与使用“前向”填充方法创建的数据框架df9进行对比。
类似地,.fillna(bfill)是一种“后向”填充方法。NaN被上面的“上”列替换为相邻单元格。下面的单元格将上面创建的DataFramedf2与使用“后向”填充方法创建的数据框架df10进行对比。
下面我们对比使用‘前向’填充方法创建的DataFramedf9,和使用‘后向’填充方法创建的DataFramedf10。
在删除缺失行之前,计算在事故DataFrame中丢失的记录部分,创建于上面的df。
DataFrame中的24个记录将被删除。记录删除部分为0.009%
除了错误的情况,.dropna()是函数是静默的。我们可以在应用该方法后验证DataFrame的shape。
资源
来源于pandas.pydata.org的10 分钟了解pandas。
教程, 并且在这个链接下面是pandas Cookbook的链接,来自pandas.pydata.org的pandas 0.19.1文档。
pandas Python数据分析库的主页。
Python数据科学手册,使用数据工作的基本工具,作者Jake VanderPlas。
pandas:Python中的数据处理和分析,来自2013 BYU MCL Bootcamp文档。
Greg Reda的介绍pandas数据结构。这是一个三部分系列使用Movie Lens数据集很好地说明pandas。
备忘单:Mark Graph的pandas DataFrame对象,并且位于爱达荷大学的网站。
使用pandas 0.19.1文档处理缺失数据。
读这本书
这篇文章是Randy Betancourt的Python SAS用户快速入门指南的摘录。查看完整的章节列表。
关于Randy
Randy Betancourt曾在SAS研究所和国际分析研究所担任过多个客户和执行官角色。公司执行面临角色度过他的职业生涯。从技术架构师开始,最近担任顾问,他建议企业领导如何培养和成本有效地管理他们的分析资源组合。最近,这些讨论和努力集中于现代化战略,鉴于行业创新的增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18