
大数据处理并不难 洞察与升值在眼前
大数据在处理过程中会涉及多个步骤,一般包括了采集、筛选、导入、存储、分析、挖掘和应用等等。
采集是获取大数据的过程;筛选则要验证所收集到数据的正确性和相关性,导入包括了对数据的预处理,将不同的数据按照不同特性进行分类和贴标签等预处理活动,按照一定的需求找到数据的关键点;存储则是将数据导入数据库组合起多个数据;分析则是最关键的一步,其需要将数据收集、整合、分析、解释并且进一步的呈现数据本质;挖掘则是要进一步呈现数据价值,以更深层次的算法获取数据价值;应用则需要将数据信息、数据摘要以及分析结论进行可视化呈现,利用大数据处理成果对用户决策等提供依据。
细分来讲,大数据的采集需要利用多个数据库来接收来自于不同客户端的数据,用户可以通过这些数据库来进行简单的查询和处理工作。这一步常常会用到关系型数据库MySQL和Oracle等,而Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
数据采集步骤所涉及的数据库并不能够支持这些数据的分析,因此需要将这些数据导入到一个集中的大型分布式数据库,然后对数据进行一些简单的清洗和预处理工作再进行存储。有时也需要在数据预处理时进行流式计算来满足实时计算需求。
大数据处理并不难
分析主要利用的是分布式数据库及分布式计算集群,对存储的数据进行分析和分类汇总等,而实时性需求会用到EMC的GreenPlum、Oracle的Exadata以及基于Infobright等,一些半结构化数据分析则更多的会使用Hadoop。
数据挖掘一般无需设定主题,而是基于现有数据进行各种计算,从而达到预测的效果,实现高级别数据分析。常用的数据挖掘算法有Kmeans、SVM和NaiveBayes等,使用的工具一般有Mahout等。数据挖掘算法一般都较为复杂,因此常用的数据挖掘算法都以单线程为主。
第2页:大数据处理常用框架
大数据处理常用框架
大数据处理框架负责对系统中的数据进行计算,并且从大量的单一数据点中提取信息和观点。大数据处理框架可以分为三类,批处理框架、流处理框架和混合处理框架。
Hadoop早已证明了自己
批处理系统是最古老的处理系统之一,其主要适用于操作大容量静态数据集,并在计算过程完成后返回结果,对于一些需要访问全套记录才能完成的计算工作较为合适。而Apache Hadoop则是一种专用于批处理的处理框架,是第一个在开源社区获得极大认可的大数据框架,基于谷歌有关海量数据处理的多篇论文与经验,Hadoop重新实现了相关算法和组件堆栈,简化了大规模批处理技术,提高了易用性。Apache Hadoop可以高效的处理对时间要求不高的大规模数据集。
流处理系统会对随时进入系统的数据进行计算,其可以处理几乎无限量的数据,但同一时间只能处理一条或很少量数据,不同记录间只维持最小量的状态。流处理框架Apache
Storm是最常用的选择,其侧重于极低延迟,甚至可以达到近实时处理的工作负载。Apache
Storm可处理海量的数据,而且可以以更低的延迟提供结果,适用于对于延迟需求很高的流处理工作负载。
Spark正在证明自己
混合处理则是针对一些特殊处理框架同时解决批处理和流处理工作负载。这种框架可用相关的组件和API处理两种类型的数据以实现简化处理。Apache Spark最常见的一种的新一代批处理框架,Spark主要侧重于通过完善的内存计算和处理优化机制加快批处理工作负载的运行速度,可作为独立集群部署与Hadoop集成并取代MapReduce引擎。Spark是多样化工作负载处理任务的最佳选择,其批处理能力以高内存占用为代价提供了速度优势。
大数据处理是让数据被洞察和升值的过程,经过了处理的数据才会闪现金子的光芒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01