
构建大数据健康发展的安全生态环境
大数据等颠覆性技术快速发展的同时,大数据安全面临的挑战也日益尖锐。5月26日至28日在贵州贵阳举办的2017中国国际大数据产业博览会上,大数据安全成为业界热议的焦点话题。专家认为,大数据产业的发展与创新必须直面数据安全的严峻挑战,急需打造和构建一个促进大数据健康发展的安全生态环境。
辨识、管控大数据风险成为国家安全“晴雨表”
在数字经济时代,无论从事哪行哪业,都需要通过对数据资源的收集、整理、挖掘来提升效率。大数据将成为未来最有价值的资源。“数据是数字经济时代最重要的生产资料,也是继土地、能源之后最重要的生产资料。”浪潮集团董事长兼CEO孙丕恕说。
为保障大数据安全,中央网信办近年来开展了一系列切实有效的指挥协调与落地部署工作。在顶层设计方面,中央网信办协同相关单位,在网络安全、信息化发展和大数据应用等方面,共同促进国家相关法律法规的增补完善和相应国家战略政策的落地出台;在安全审查方面,进一步防范信息安全产品与技术应用领域的潜在隐患和安全风险,为国家信息主权和数据主权的保护提供切实支撑。
“短短几年里,大数据战略已经从全面总体布局,向各大行业、细分领域扩展延伸。一系列战略规划的大布局体现了大数据发展驱动效应日趋凸现。”在2017中国国际大数据产业博览会期间举办的大数据安全高层论坛上,中国信息安全测评中心专家委员会副主任黄殿中表示,辨识和管控大数据风险成为监控国家安全能力的试金石,也是体现国家安全的“晴雨表”。
“我国大数据发展已进入关键时期,大数据深刻改变了人们的思维方式、生产方式和生活方式。”中国信息安全测评中心主任朱胜涛也认为,大数据时代的安全威胁成为全人类面临的共同问题,任何国家都难以独善其身,也无法置身事外。
大数据风险隐患多
通付盾科技有限公司总裁王梅坦言,2016年共有超过十亿数据被窃取,其中95%属于科技、金融等行业;数据欺诈行为也凸显非接触性和隐蔽性,欺诈方式更加智能化、专业化,诈骗手段不断翻新,尤其金融欺诈越来越呈集团化、职业化态势。
中国工程院院士倪光南表示,过去传统的安全在保密性、完整性和可用性方面,基本都是技术因素,也有一套比较完整的测评体系,但对于网络安全、大数据安全显然不够。“网络安全很重要的一点是强调可控性。”倪光南说。
“网络安全威胁无处不在。漏洞是绝对存在的,没有攻不破的网络。”奇虎360公司副总裁石晓虹表示,除了基础设施安全,还包括系统漏洞和后门、外部攻击和窃密、数据资产泄露、内部非授权访问、违规交易等。此外,风险还存在于大数据的采集、传输、存储、应用等整个生命周期中。
“与保护静态文件或数据库等传统安全相比,‘大数据环境下的数据安全’具有特殊性。”阿里巴巴技术副总裁、首席安全专家杜跃进也认为,在万物互联的环境下,用户几乎每时每刻都在产生数据,用户隐私、自身权益和安全如何保障成为面临的新问题。此外,大量网站或应用的安全防护水平不高,导致不法分子可以从中大量窃取数据,令人防不胜防。
期待建立统一数据平台和共享机制
“赢安全者赢未来。”在黄殿中看来,大数据安全成为推进全国安全建设的压舱石,而大数据的开放是双刃剑,只有做好准备才能不伤及自身,“对于涉及国家机密确又有利于大数据发展的,应该有利引导;对涉及大是大非问题的,必须坚守底线”。
黄殿中认为,在强化大数据安全治理问题上,要综合运用政策法规、技术保障、人才培养和市场引领等施策手段,充分调动和发挥国家、企业和个人的优势力量,切实加强大数据发展的安全治理与综合施策。
“构筑安全管理体系,才能应对各种漏洞,让攻击者进不去,进去了也拿不到东西,即便拿到了也看不懂、改不了……”中国工程院院士沈昌祥提到,要开启网络安全主动防御时代,唯有主动免疫的可信计算才能解决大数据安全问题。
数据作为一项重要资产,也是下一代“石油”。中石化集团信息管理部主任李德芳常常这样比喻。他认为,从应用层面看,应该通过利用大数据构建应用体系来打造产业竞争新优势。“要建立统一的数据平台,实现数据资产的统筹管理和高效管控;做到管理和技术并重,做好态势感知,实现协同共享,构建一个相对全面、安全、牢固的保障系统。”李德芳说。
“期待数据可以安全地流动、共享。”天空卫士CEO刘霖也表示,安全厂商不能故步自封,应打破壁垒,加强合作,形成数据共享模式,“不要把保障数据安全当成一种可有可无、锦上添花的技术,而是要根据业务需求与企业的管理真正整合起来。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29