京公网安备 11010802034615号
经营许可证编号:京B2-20210330
将大数据变成可管理的数据
大数据是无所不在的,因为它可以提供有价值的洞察力,如果没有它是不可用的。然而,分析大数据集可能会产生问题。首先,大数据是大规模的,有时太大,不能通过常用的分析工具有效地处理。日前,美国麻省理工学院计算机科学与人工智能实验室和以色列海法大学的研究人员已经开发了一个解决方案,将大数据变成可管理的数据。
通常使用诸如低秩近似,奇异值分解,主成分分析和非负矩阵分解的数据分析工具来减少数据集中的变量的数量。不幸的是,在大量大数据集上使用这些工具通常太费时,不实用。
解决这个问题的典型解决方案包括为大数据集找到一个核心集。核心集是大数据的一个子集,用于保留大数据最重要的数学关系。数据分析工具可以更有效地与coreet工作,因为它更小。
如果要进行两个或多个数据分析,则进行查找可能是一个问题,因为从大数据中提取核心集,每个分析工具都有自己唯一的方法。在分析中比较结果,将涉及比较来自不理想的不同核心的结果。研究团队通过开发一种用于提取可由大量常用数据分析工具使用的核心集的通用方法来解决这个问题。
假设工作人员想要识别在一个巨大的文本数据库(如维基百科)中最常出现的主题。低秩近似是一种将完成这项工作的算法,但维基百科数据库非常大,因此,采用低秩近似将花费太长的时间来完成任务。
维基百科数据库有多大?想象一下,在维基百科中每一篇文章都有一行的矩阵或表格,以及在维基百科中出现的每个单词的列。该矩阵将有140万篇的文章和440万列的单词。这是一个约6.2万亿个单元格的表格,平均分配到地球上每个人,每人约为821个单元格。这的确是一个大数据。
研究人员的解决方案使用高级类型的几何知识来将这个巨大的数据集缩减为更易于管理的核心集。想象一下,通过一个二维的具有长和宽的矩形就很容易处理。现在添加第三个维度,深度。也很容易想象这是一个盒子,现在添加第四个维度,时间。我们称之为时空,但它不是那么容易想象。现在添加两个或三个更多的维度,并想象它的外观。
人们无法想象这些多维空间看起来像什么,但是可以采用几何知识描述。为了缩小维基百科矩阵,研究人员使用了一个叫做超循环的多维圆,它有440万个维度,可以表达维基百科中出现的每个单词一个。维基百科中的140万篇文章中的每一篇都表示为这个超循环上的唯一点。
研究人员如何将超循环收缩成更易于管理的东西?维基百科中的440万列单词的每一个都由一个变量表示,维基百科中的每篇文章都由这些440万个变量的唯一的一组值表示。研究者的超循环技术涉及一次获取一篇文章,并找到其440万个变量的一小部分的平均值,例如50个变量。最好保留变量之间的数学关系的平均值可以通过计算表示50个变量或单词的这个小得多的50维超循环的中心来找到。然后将平均值作为coreet中的一个数据点输入。而对每篇文章中的剩余变量(单词)和140万篇文章中的每一篇重复这个过程。
使用此方法将大数据维基百科矩阵缩减为核心集需要大量的单独计算,但每个计算都可以非常快速地执行,因为它只涉及50个变量。其结果是一个核心集,它保留了大数据中存在的重要的数学关系,并且足够小,可以被各种数据分析技术有效地使用。
超循环技术的真正核心在于这种品种。该技术创建了一个核心集,可以被许多数据分析工具使用,这些工具通常应用于计算机视觉,自然语言处理,神经科学,天气预报,推荐系统等。甚至人们可能认为超循环,都是他们所有规则的一环。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15