京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Spss的基本方法使用步骤
由于一次的调研工作,我们的数据分析采用spss的统计分析工具,然后我是一个新人,全都是一步一步从零开始操作的。在学习的过程中简单记录了一点笔记,既然写了,就觉得应该把它保存下来,所以来到了这里,为我的第一次spss操作做个马克。
因子分析方法:指标非常多,反映相同事情的进行聚合
设置的地方:
描述—— kmo
抽取 —— 主成分,碎石图
旋转——最大方差法
得分——保存为变量
选项——大小为变量、删除最小系数,特征值为0.6
kmo > 0.6 ——看是否有效,对原始数据的检验。
在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01<P<0.05,则为差异显著,如果P<0.01,则差异极显著。
公因子方差——提取程度(损失的数据,如果损失低于40%即满意)
解释总方差:可以分成几类,然后提取主成分因子,累积方差贡献率,累积特征值大于等于85%(放宽70%).(损失率低于15%)
碎石图:类似于解释总方差,特征值大于1的就是主成分,对解释方差的解释和完善
成分矩阵——一般不考虑,不够充分,只是中间步骤
旋转后成分矩阵——成分1,成分2中大于0.6的归为一类,载荷大于设置的值才会把得分显示在视图。
步骤:
分析→度量→可靠性分析→统计量→描述性(如果项已删除则进行度量)→继续(模型α)→确定
分析:可靠性统计量:0.7以上有效
可删除的分析:如果删除后信度变大,则可以考虑把这个因素删除
平均数:反应数量的中点
中位数:全体样本的中点
步骤:
均值:描述性统计分析→描述→导入变量→确定
中位数:比较均值→均值→导入变量→选项→导入中位数即可→确定
步骤:
分析→回归→线性→因变量→自变量→
统计量:估计→模型拟合度→共线性诊断→DW
绘制:Y:ZRESID, X:ZPRED; 直方图,正态概率图
保存:不操作
选项: 默认
→确定
模型汇总表
DW统计量代表自相关
DW = 2不存在为伪回归
DW < 2 正自相关
DW > 2 负相关
多重响应,多重响应数据本质上属于分类数据,但由于各选项均是对同一个问题的回答,之间存在一定的相关,将各选项单独进行分析并不恰当。因此对多选题最常见的分析方法是使用SPSS中的“多重响应”命令,通过定义变量集的方式,对选项进行简单的频数分析和交叉分析
作用1:进行简单的频数分析:可以直观明了的比较一道多选题的各个选项被选比例。
作用2:进行交叉分析:可以通过设置分层变量来进行某个选项控制下的分析。
步骤:
分析→多重响应→定义变量集(把多选题变成一个变量)→设置定义把多选题的选项放进集合中的变量→将变量编码设置为二分法,计数值为1→名称标签→添加 、
行、列→定义范围→确定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27