京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用简单的分析发现运营的秘密之:构成分析
一提到数据分析,很多人立刻会联想到眼花缭乱的数据、高大上的工具、高深莫测的算法,认为那些东西离自己很远而望而却步。其实,数据分析不一定都要用得上复杂的工具和高深的算法,一些简单易行的基础分析方法同样可以具有非凡的洞察力。今天我们就简单聊一聊基础分析方法之一:构成分析。
构成分析也叫做结构分析或比例分析,是用来分析和揭示一种事物的组成部分及其占比的一种普遍性分析方法。利用构成分析,我们可以知道话务类别、投诉原因、客户群体、员工表现等多个方面的构成要素,从而确定进一步分析与改进的目标及优先级顺序。
首先,我们来看一下某中心的当前人工话务构成:
人工话量构成示例
当你看到这个数据的时候会首先想到什么呢?从运营的角度来讲,重复来电占比高意味着接听率不理想、首解率不理想、宝贵的人工工时的“浪费”以及客户的负面感知。那么“降低重复来电占比”就很自然的成为工作量优化以及人工效能提升优先考虑的对象。
除了话量构成,我们还可以同样用这种简洁有力的方法来查看各话务类型占比、各联络渠道业务承接量占比、解决与未解决占比、总工时消耗占比等等各种构成情况。
日常运营管理中,优化平均处理时长(AHT)是提升人均产能和整体产能的关键举措之一。而如何发现通话时长的瓶颈既优化点是这项工作的前提。运用构成分析,我们可以把典型的通话流程进行解构(见下图),针对每一个关键环节进行消耗时长的测量,然后再从总体差异、节点差异等方面进行进一步的对比与剖析,从而找到各个环节的优化空间。
通话流程时长分解
再看下面的客户与话务构成对比分析:
客户的联络频率并不是均匀的,很多客户可能常年都不会联络你,有些客户一有问题就会联络你,还有些客户有事没事就喜欢联络你。我们不能直接左右客户的行为,但分析、引导与预防工作还是要做的。根据麦肯锡的一项调查结果,呼叫中心51%的来电是由14%的客户发起的。也就是说,14%的客户造就了呼叫中心一半以上的工作量。当我们把客户及来电分别进行构成分析并放在一起做对应对比的时候(如下图),其结果往往会令我们眼前一亮或者心中一惊。那么接下来的工作重点就不言而喻了,这14%的客户群是什么人?他们有什么共同特征?他们的来电原因有什么共性?我们可以采取什么方式进行疏导、预防、甚至控制?
客户与话量的构成对比
正确地定位问题(what)、解构问题(why)是寻找问题解决方法(how)的重要前提,而从最简单的基础分析方法入手,人人都可以是数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20