
大数据分析的局限乃传统统计学问题
大数据”已成为当今炙手可热的科技,商务、医疗、社交、教育、政务等领域纷纷广泛采用“大数据”技术去提升应用系统的智能及效率。
“大数据”分析之潜在问题
“大数据”的广泛应用始于美国。自从美国总统奥巴马2012年3月推出2亿美元的“大数据研究及发展计划”后,世界各大小经济体陆续仿效,大力投资相关领域。全球资讯科技企业亦不敢怠慢,积极推出适合的大数据资讯科技方案及产品,更大洒金钱推广大数据分析的优点及其所能带来的商机。据观察,近期不少从事金融、医疗、社会工作、工商业、政务等范畴主管都已被潜移默化,鼓吹“大数据”的功能及效益。然而,“大数据”真的是万能的吗?本文引用不同的国际专家报告,反映“大数据”分析之潜在问题。
首篇报告题为《谷歌流感的比喻:大数据分析的陷阱》("The Parable of Google Flu : Traps of Big DataAnalytics"),描述了谷歌公司曾利用“大数据”分析推算2011/2012年度美国流感的趋势,但结果却强差人意,估计的流感个案数目远超过实际数目。而谷歌利用的数据是来自用户使用的关键词(如“禽流感”)次数及分布作推算分析。专家认为构成严重误差的主要原因是谷歌盲目地广泛收集关键词,以为越多越好,却没有了解用户查询时的出发点,结果收集得的数据大部分来自非流感病患者,因此在数据采集阶段已严重犯错,自然推算失准。若数据分析全力集中在流感病患者,结果便会截然不同。
第二位专家是美国加州大学伯克利分校的国际知名学者米高佐敦(MichaelJordon)教授,他最近接受美国IEEE学会杂志访问,在题为"Machine-LearningMaestro Michael Jordan on the Delusions of Big Data and Other Huge EngineeringEfforts" 一文中指出,“大数据”在现今商业市场被过分炒作,它最后可能只是一场空欢喜,教授更预测“大数据”的“冬天”即将来临。他认为“大数据”用户作出假设的速度将会超越大数据的统计范畴,在这情况下数据分析结果难免会出现错误,造成大量噪音,影响推算的可靠性。
从另一角度看,“大数据”用户往往忽略数据的“动力”(dynamics)。例如在变幻无常的商务环境中,用户的需求不停在变,那么昨天的“大数据”分析结果能有效地应用于今天的商务环境吗?能够满足用户今天的需求吗?若然不能,我们需要重新进行分析,但昨天采集商务数据的方法能满足用户今天的新需求吗?归根究底,什么时候开始分析及什么时候停止既是统计学应用的老问题,亦是“大数据”分析必须严肃面对的问题,但在千变万化的应用及数据环境下,要应对这个问题更是难上加难。因此佐敦教授进一步指出“大数据”分析服务提供者有责任清楚说明分析推算法的质量标准及其误差度,做好用户的“期望管理”(Expectation Management)。
“大数据”的十大局限
“前车可鉴”,因此用户在使用“大数据”技术时不容掉以轻心,必须紧慎考虑它在操作上的“盲点”(局限性)。归纳而言,这些“盲点”大致是由于以下网络数据的不健康特性而产生:
- 噪音性:网上数据泛滥,资讯内容五花八门,格式也参差不一。要从中过滤与应用需求无关的数据,既复杂亦耗时。
- 真实性:由于网络资讯自由,即使在找出相关数据之后,内容的真假亦难以分别。例如去年在美国总统大选期间,在网络媒体上謡言满天飞,虚假新闻层出不穷,渗透全美每一角落;“教宗赞助特朗普”、“希拉里向伊斯兰国(IS)贩卖军火”等假新闻在《脸书》上的分享及点评率远比传统纸媒为高。然而,“垃圾入,垃圾出”(Garbage In Garbage Out),基于伪造资讯的“大数据”分析,难免会适得其反。
- 代表性:真实的数据并不一定具代表性。若然系统错误地使用了缺乏代表性的资料作分析的话,结果便会弄巧反拙。
- 完整性:利用非完整的数据进行分析,结果以偏概全,不尽不实,容易引致误判。
- 时效性:某类数据在事件发生当刻可能大派用场,但当事件或时限过后,其影响力未必复再。若然过量的旧数据被用作分析,结果未能反映现况。再者,适时的数据往往因为比旧数据少而很容易被忽略。
- 解释性:在“大数据”的分析过程中,基于输入的数据,算法便会产生及输出分析结果。在分析过程中,数据输入如何产生输出的理据及两者的因果关系并不清晰,如黑箱作业。
- 预测性:世事变幻莫测,以前从未发生过的意外絶不罕见,但却难以预料(分析出来)。因此,有专家认为“大数据”分析是规范的(prescriptive)而不具预测性(predictive)的功能。
- 误导性:使用假资讯或错误分析算法均会影响结果的可靠性。“尽信书则不如无书”,未经核实及验证的分析结果可能会造成严重的反效果。
- 合法性:数据内容、采集方法及其使用过程极有可能涉及个人私隐、商业机密及公众权益等资讯。因此,资讯的安全性和合法性对“大数据”应用十分之关键,可是不少企业只顾赚钱,而罔顾这些因素。
- 价值性:“大数据”不是免费的,企业切忌盲目跟风。数据本身、分析软件等均所费不菲,因此成本效益的衡量是企业采用“大数据”的另一关键考虑点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27