
大数据改变食品业的五种方式
大数据分析和数据科学是当下全球企业界的两大流行词。令人想不到的是,使用它们的不仅有大公司,还有中小企业。无论公司大小,数据都是一笔宝贵的资产,不管是结构化、半结构化还是非结构化数据。大数据分析使企业决策者可以真正了解消费者的需求,优化营销宣传,实现动态定价,更有效地服务于客户。
食品行业由于其规模和经营特点,更应该采用大数据。根据《财富》杂志的报道,“食品类初创企业获得的风险投资达到28亿美元。”尽管食品行业的规模很难确定,但《福布斯》杂志指出,据欧睿国际(Euromonitor International)估计,包装食品行业(比如方便面、食用油、罐装和冷冻食品)的规模接近1.6万亿欧元。另外,根据世界银行的报告,食品和农业部门占到了全球GDP的10%,而且随着人口的增长和消费者行为的变化,这一比例还会提高。购买食品的消费者和购买原料的企业留下了巨大的数字足迹,这还不包括在食品供应链内部,大量交易留下的数字足迹。
那么,大数据如何在食品行业发挥作用呢?以下是大数据在食品行业的几种用途。
找出客人真正喜欢的口味
通过来自论坛、社交媒体、视频网站、图片分享网站、点评网站和其他地方的数据,可以实时了解消费者的喜好,同时也能获知竞争对手吸引顾客的方式。这种市场信息是无价的,企业据此可以知道应该销售哪类产品、该投资什么,以及哪些食品被认为是健康或是不健康的。目前,服务于电信客户的咨询公司已将这些技巧应用于论坛和社交媒体。我们没有理由认为不能将同样的技巧应用于食品业。Fabrikatyr Analytics已经在电信和航空业取得了一系列成功。
做出更美味的菜肴
美味的菜肴将为餐厅带来回头客。分析用餐者的反馈有助于做出新颖独特、令人垂涎的菜肴。最近,一群数据科学家从美食论坛和菜谱中挖掘数据,弄清楚了印度食物的口味。这是个很好的例子,说明数据科学可以用于食品业,帮助厨师和餐厅管理者调整菜谱,从而改善顾客体验,让菜品更受欢迎。
找出不同地区的用餐特点
在不同地区拥有连锁店的餐厅,可以利用大数据来发现各地的食物偏好,甚至可以将一个地区的美食引入另一个地区,作为特色菜供应。从林林总总的美食论坛上,我们可以知道哪些食物正在流行,哪些快餐又将成为新的潮流。想想看,如果你早已知道美国的Chipotle或英国的Nando’s将成为快餐市场上的领导者,那会怎么样?以往,食品行业也有过引领潮流的产品,但这两家公司却将墨西哥卷饼和葡式烤鸡做成了畅销品。为什么不能把文本分析或大数据分析用于这样的市场趋势?眼下,Zalando已经在时装业开展了这方面的尝试,推出了“时装趋势分析”项目。
需求规划
近日,知名风投公司A16Z的科技播客采访了送餐类初创企业Gobble的创始人。她说,数据科学是他们在市场中的竞争优势,有了数据科学,他们可以提供更好的用户体验,还能优化库存,降低成本。数据科学让Blue Apron和Gobble这样的公司能够凭借更好的用户服务,颠覆食品行业,同时还能利用算法来预测需求,优化库存。这无疑对老牌食品企业提出了挑战。抱残守缺的企业将被更加灵活的竞争对手击败。
选址规划
如果你想为特定类型的餐厅预测最佳选址,数据将为你提供帮助。你可以利用import.io得到当地餐厅的信息,再利用data.gov等政府网站得到重要的商业信息,比如人口特点和餐厅数量。这些信息都可以用于选址,甚至用来创建盈利模式。Booking.com就利用这样的数据,为网站上的酒店排序。为何不利用这样的数据来规划选址呢?
这进一步表明,“数据革命”才刚刚开始,它将对食品业等传统行业产生愈加深刻的影响。未来,我们将看到更多这样的例子:更加个性化的食品、更合理的需求规划、孟山都等公司的精密种植,此外,还有很多用途是现如今我们尚无法想象的。食品行业的一些从业者或许认为,大数据对他们并不重要。然而在音乐、图书等行业,我们已经见识了大数据的威力。食品业会有什么不同吗?我想不到合乎逻辑的理由。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01