京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看三大运营商如何将大数据的“富矿”变“钻石
如今我们处在一个无处不数据的时代,坐拥大数据这座富矿,国内无论是互联网企业还是运营商都在紧锣密鼓的建设大数据平台,企图将这座宝矿开发成为熠熠生辉的“钻石”。
目前,国内三大运营商迎接大数据时代的步伐和规划各自不同,中国电信的大数据平台已经扩展到31个省,基础平台建设基本完成;中国联通虽然起步晚一些,但是其大数据产品体系已经发展成为六大产品种类;相对于中国电信和中国联通的成熟,中国移动的数据中心资源略显不足,但是需求量不断递增,也在不断努力布局中。
中国电信:大数据平台扩展到31个省 基础平台建设基本完成
中国电信所有的大数据都是在云平台和云设施之上搭建的,如今其大数据平台建设从原来的5个省现在扩展到31个省,数据的种类从开始的几类主要的数据扩展到十几类,实效性是原来一周到现在小时的延时。
中国电信云计算分公司大数据事业部首席数据分析师张宇中表示:“中国电信的大数据平台跟其它合作伙伴的模式不一样,中国电信主要是做节约化运营,将数据的汇聚、接入、存储、加工、输出整合在一起,这样前端的响应可以快速的传递到客户中去,并且可以持续的循环。同时,中国电信的平台开发还做了具体功能区分。”
目前中国电信已经完成了大数据基础平台的建设,正在继续完善行业的应用。依托云网融合,中国电信的大数据开放平台一直拥有强大的资源,中国电信有八大资源基地,还有内蒙和贵州两大数据中心,并且很多区域下沉的边界。
2015年11月28日,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
据了解,中国电信推出的4+1产品模块,拥有15个子项。其中有面向个人拥护推出的风控的和精准营销产品;还有一部分是输出具体数据,形成相关报告;此外,中国电信还开发了PAAS的平台对价值链的某一方面具有专业特色的公司能够利用大数据平台做它所擅长的事情。可以说,中国电信通过多种手段为产业链打造了一个比较安全可靠的大数据平台。
此外,中国电信还和其它100家企业共同发起成立BDU中国企业大数据联盟,期望能够与产业链共同推进大数据生态的建设。
中国联通:大数据产品体系发展为六大类
中国联通从2013年开始发展大数据业务,如今其大数据产品体系已经发展成为六大产品种类。
据了解,这六大产品种类分别是:一征信产品,例如大数据最大的应用是在金融行业,金融行业需求电信运营商所拥有的大量用户的真实性数据;二沃指数,分析包括市场洞察和行业指数两个方面,行业指数涉及到金融、交通、旅游、APP,以及各类的各个垂直行业分析的指数;三精准营销产品,中国联通有很多用户资源和渠道,在保护用户隐私的前提下,可以做到针对不同的场景和不同的用户,进行内部和外部的精准营销;四用户标签;五能力开放平台;六智慧足迹。
特别需要指出的是去年底中国联通在第二届世界互联网大会上,首次发布了“沃指数”大数据产品体系。该产品体系以中国联通4亿用户数据为基础,具备海量、实时的数据处理能力,通过与政府、行业权威机构的数据进行整合、提炼、分析和挖掘,具有真实、全量、安全、实时、公正的特点。
据介绍,“沃指数”涵盖了3000余个用户标签,能够轻松识别3.8亿条URL、6万个互联网产品、约3000个手机品牌、8.2万个终端型号,据此可助力政府在城市规划、公共服务、交通出行、旅游监控、抢险救灾等方面提供决策依据;帮助企业在商业选址、广告投放、信用控制、产品设计等方面提供分析报告及经营决策指导;为公众提供交通出行、旅游选择、消费指南等生活服务。
目前中国联通对移动网和固网用户的数据采集、数据存储、分析和挖掘,形成了以下能力:包括9个大类的用户的标签,涉及到各个行业,各个类别,识别3.8亿条URL的特征,可以识别6万左右个互联网产品,以及可以对3000个手机品牌,以及8.2万个终端型号进行识别。
中国移动:数据中心资源不足 分两级布局
数据中心资源不足一直以来是中国移动面临的问题,尤其是随着4G用户近年来的高速发展,数据中心需求量不断递增。
据了解,2014年,中国移动数据中心全网机柜超过了43700架,预计2016年将突破10万架。
此外,日前中国移动启动2016-2017年度数据中心交换机集中采购工作,预计数据中心交换机(接入交换机)采购3697套,数据中心交换机(出口交换机)采购731套。
近日中国移动计划建设部基建管理处处长舒建军在公开场合谈及中国移动数据中心规划,“中国移动的数据中心在布局上分两级布局:一级是为全网服务的总部主管数据中心;另一级是省公司主管数据中心。总部主管数据中心主要部署在内蒙、哈尔滨这两个地方,主要服务于全网的集中化的自用系统,兼顾地域不敏感的IDC客户需求、公众服务云。”
另外,在选址方面,现在中国移动设计的数据中心,PUE在北方区域达到1.32,在南方甚至在海南、广东一带达到1.4。这些技术在呼和浩特、哈尔滨包括国际信息港、南方基地等数据中心都有应用,而且这四个数据中心都是为全网服务的数据中心。
总之,中国移动建设数据中心的目标是安全、高效、低成本、绿色,要努力实现IT、土建、机电的最佳匹配。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07