京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看三大运营商如何将大数据的“富矿”变“钻石
如今我们处在一个无处不数据的时代,坐拥大数据这座富矿,国内无论是互联网企业还是运营商都在紧锣密鼓的建设大数据平台,企图将这座宝矿开发成为熠熠生辉的“钻石”。
目前,国内三大运营商迎接大数据时代的步伐和规划各自不同,中国电信的大数据平台已经扩展到31个省,基础平台建设基本完成;中国联通虽然起步晚一些,但是其大数据产品体系已经发展成为六大产品种类;相对于中国电信和中国联通的成熟,中国移动的数据中心资源略显不足,但是需求量不断递增,也在不断努力布局中。
中国电信:大数据平台扩展到31个省 基础平台建设基本完成
中国电信所有的大数据都是在云平台和云设施之上搭建的,如今其大数据平台建设从原来的5个省现在扩展到31个省,数据的种类从开始的几类主要的数据扩展到十几类,实效性是原来一周到现在小时的延时。
中国电信云计算分公司大数据事业部首席数据分析师张宇中表示:“中国电信的大数据平台跟其它合作伙伴的模式不一样,中国电信主要是做节约化运营,将数据的汇聚、接入、存储、加工、输出整合在一起,这样前端的响应可以快速的传递到客户中去,并且可以持续的循环。同时,中国电信的平台开发还做了具体功能区分。”
目前中国电信已经完成了大数据基础平台的建设,正在继续完善行业的应用。依托云网融合,中国电信的大数据开放平台一直拥有强大的资源,中国电信有八大资源基地,还有内蒙和贵州两大数据中心,并且很多区域下沉的边界。
2015年11月28日,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
据了解,中国电信推出的4+1产品模块,拥有15个子项。其中有面向个人拥护推出的风控的和精准营销产品;还有一部分是输出具体数据,形成相关报告;此外,中国电信还开发了PAAS的平台对价值链的某一方面具有专业特色的公司能够利用大数据平台做它所擅长的事情。可以说,中国电信通过多种手段为产业链打造了一个比较安全可靠的大数据平台。
此外,中国电信还和其它100家企业共同发起成立BDU中国企业大数据联盟,期望能够与产业链共同推进大数据生态的建设。
中国联通:大数据产品体系发展为六大类
中国联通从2013年开始发展大数据业务,如今其大数据产品体系已经发展成为六大产品种类。
据了解,这六大产品种类分别是:一征信产品,例如大数据最大的应用是在金融行业,金融行业需求电信运营商所拥有的大量用户的真实性数据;二沃指数,分析包括市场洞察和行业指数两个方面,行业指数涉及到金融、交通、旅游、APP,以及各类的各个垂直行业分析的指数;三精准营销产品,中国联通有很多用户资源和渠道,在保护用户隐私的前提下,可以做到针对不同的场景和不同的用户,进行内部和外部的精准营销;四用户标签;五能力开放平台;六智慧足迹。
特别需要指出的是去年底中国联通在第二届世界互联网大会上,首次发布了“沃指数”大数据产品体系。该产品体系以中国联通4亿用户数据为基础,具备海量、实时的数据处理能力,通过与政府、行业权威机构的数据进行整合、提炼、分析和挖掘,具有真实、全量、安全、实时、公正的特点。
据介绍,“沃指数”涵盖了3000余个用户标签,能够轻松识别3.8亿条URL、6万个互联网产品、约3000个手机品牌、8.2万个终端型号,据此可助力政府在城市规划、公共服务、交通出行、旅游监控、抢险救灾等方面提供决策依据;帮助企业在商业选址、广告投放、信用控制、产品设计等方面提供分析报告及经营决策指导;为公众提供交通出行、旅游选择、消费指南等生活服务。
目前中国联通对移动网和固网用户的数据采集、数据存储、分析和挖掘,形成了以下能力:包括9个大类的用户的标签,涉及到各个行业,各个类别,识别3.8亿条URL的特征,可以识别6万左右个互联网产品,以及可以对3000个手机品牌,以及8.2万个终端型号进行识别。
中国移动:数据中心资源不足 分两级布局
数据中心资源不足一直以来是中国移动面临的问题,尤其是随着4G用户近年来的高速发展,数据中心需求量不断递增。
据了解,2014年,中国移动数据中心全网机柜超过了43700架,预计2016年将突破10万架。
此外,日前中国移动启动2016-2017年度数据中心交换机集中采购工作,预计数据中心交换机(接入交换机)采购3697套,数据中心交换机(出口交换机)采购731套。
近日中国移动计划建设部基建管理处处长舒建军在公开场合谈及中国移动数据中心规划,“中国移动的数据中心在布局上分两级布局:一级是为全网服务的总部主管数据中心;另一级是省公司主管数据中心。总部主管数据中心主要部署在内蒙、哈尔滨这两个地方,主要服务于全网的集中化的自用系统,兼顾地域不敏感的IDC客户需求、公众服务云。”
另外,在选址方面,现在中国移动设计的数据中心,PUE在北方区域达到1.32,在南方甚至在海南、广东一带达到1.4。这些技术在呼和浩特、哈尔滨包括国际信息港、南方基地等数据中心都有应用,而且这四个数据中心都是为全网服务的数据中心。
总之,中国移动建设数据中心的目标是安全、高效、低成本、绿色,要努力实现IT、土建、机电的最佳匹配。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24