
sas输出基尼方差,F检验
有时候,我们在建模前期会有一个变量探索的单变量与因变量的数据分析报告,但其实,不同的数据形式有不同的指标来衡量变量与因变量的解释能力
今天的代码介绍的就是单变量与因变量之间的基尼方差,F检验的输出,你会说那proc reg中就有p值的输出啊,为什么要自己写。我个人是觉得proc reg是针对线性回归的,但是我们今天用到的因变量依旧还是二元的分类变量,所以就用我自己写到啦。
01
基尼方差
基尼方差被定义为衡量以下三种情况下变量之间的关联性指标:
1、一个连续变量和一个名字或顺序变量。
2、两个名字变量。
3、两个顺序变量。
这里介绍一个连续变量以及一个名义变量x的情况。介绍之前先明白几个符号的由来
基尼方差可以定义为:
G=1-SSE/STD
02
F检验
F检验衡量的是一个连续变量和一个名义变量之间的关联性,其中,谁是因变量不重要,该检验对两种情况都有效,F检验的统计量定义为:
F=MSTR/MSE
如果x是二元变量,并用0,1表示,F值及其相关联的p值可以用线性回归模型进行计算,模型中的y作为因变量,x作为唯一的自变量,用线性回归计算出来的f值可以用p值进行解释。这里你肯定你懵逼,你这不是打脸吗,说好y是二元的。因为我这部分是只有y和x两个变量,所以谁做因变量都无所谓。p值是可以建立模型的概率,及变量x和y之间无关联的概率。数据分析师培训
终于可以贴代码了!!!
%let DSin=test.SCORE_TOTAL_LIST_TEST_4;
%let Xvar=customer_status;
%let YVar=var1;
%macro CalcGrF(DSin, Xvar, YVar, M_Gr, M_Fstar, M_Pvalue);
proc freq data=&DSin noprint ;
tables &XVar /missing out=Temp_Cats;
run;
Data _null_;
retain N 0;
set Temp_Cats;
N=N+count;
call symput ("X_" || left(_N_), compress(&XVar));
call symput ("n_" || left(_N_), left(count));
call symput ("K", left(_N_));
call symput ("N", left(N));
Run;
proc sql noprint;
select avg(&YVar) into :Ybar from &DSin;
%local i;
%do i=1 %to &K;
select avg(&YVar) into :Ybar_&i
from &DSin where &XVar = "&&X_&i";
%end;
select var(&YVar) into: SSTO from &DSin;
%let SSTO=%sysevalf(&SSTO *(&N-1));
%let SSR=0;
%let SSE=0;
%do i=1 %to &K;
select var(&YVar) into: ssei
from &DSin where &Xvar="&&X_&i";
%let SSE=%sysevalf(&SSE + &ssei * (&&n_&i - 1)) ;
%let SSR=%sysevalf(&SSR+ &&n_&i * (&&Ybar_&i - &Ybar)*(&&Ybar_&i - &Ybar));
%end;
quit;
%let MSR=%sysevalf(&SSR/(&K-1));
%let MSE=%sysevalf(&SSE/(&N-&K));
%let M_Gr=%Sysevalf(1-(&SSE/&SSTO));
%let M_Fstar=%sysevalf(&MSR/&MSE);
%let M_PValue=%sysevalf(%sysfunc(probf(&M_Fstar,&K-1,&N-&K)));
data result;
M_Gr=&M_Gr.;
M_Fstar=&M_Fstar.;
M_PValue=&M_PValue.;
run;
proc datasets library=work nolist;
delete temp_cats;
run; quit;
%mend;
%CalcGrF(DSin=&DSin., Xvar=&Xvar., YVar=&YVar.);
结果如下:
这个结果显示的是:p值很高,没有什么关联性。具体的解释也可以自行百度哈
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04