优化算法—拟牛顿法之DFP算法
一、牛顿法
此时,是否可以通过模拟出Hesse矩阵的构造过程?此方法便称为拟牛顿法(QuasiNewton),上式称为拟牛顿方程。在拟牛顿法中,主要包括DFP拟牛顿法,BFGS拟牛顿法。
二、DFP拟牛顿法
1、DFP拟牛顿法简介
2、DFP校正方法的推导
3、DFP拟牛顿法的算法流程
DFP拟牛顿法的算法流程如下:
4、求解具体的优化问题
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from numpy import *
#fun
def fun(x):
return 100 * (x[0,0] ** 2 - x[1,0]) ** 2 + (x[0,0] - 1) ** 2
#gfun
def gfun(x):
result = zeros((2, 1))
result[0, 0] = 400 * x[0,0] * (x[0,0] ** 2 - x[1,0]) + 2 * (x[0,0] - 1)
result[1, 0] = -200 * (x[0,0] ** 2 - x[1,0])
return result
dfp.py
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from numpy import *
from function import *
def dfp(fun, gfun, x0):
result = []
maxk = 500
rho = 0.55
sigma = 0.4
m = shape(x0)[0]
Hk = eye(m)
k = 0
while (k < maxk):
gk = mat(gfun(x0))#计算梯度
dk = -mat(Hk)*gk
m = 0
mk = 0
while (m < 20):
newf = fun(x0 + rho ** m * dk)
oldf = fun(x0)
if (newf < oldf + sigma * (rho ** m) * (gk.T * dk)[0,0]):
mk = m
break
m = m + 1
#DFP校正
x = x0 + rho ** mk * dk
sk = x - x0
yk = gfun(x) - gk
if (sk.T * yk > 0):
Hk = Hk - (Hk * yk * yk.T * Hk) / (yk.T * Hk * yk) + (sk * sk.T) / (sk.T * yk)
k = k + 1
x0 = x
result.append(fun(x0))
return result
testDFP.py
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8 数据分析师培训
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from bfgs import *
from dfp import dfp
import matplotlib.pyplot as plt
x0 = mat([[-1.2], [1]])
result = dfp(fun, gfun, x0)
n = len(result)
ax = plt.figure().add_subplot(111)
x = arange(0, n, 1)
y = result
ax.plot(x,y)
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03