京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优化算法—拟牛顿法之DFP算法
一、牛顿法
,其中x表示向量。在牛顿法的求解过程中,首先是将函数
在
处展开,展开式为:

,表示的是目标函数在
的梯度,是一个向量。
,表示的是目标函数在
处的Hesse矩阵。省略掉最后面的高阶无穷小项,即为:




时,上式为:

此时,是否可以通过
模拟出Hesse矩阵的构造过程?此方法便称为拟牛顿法(QuasiNewton),上式称为拟牛顿方程。在拟牛顿法中,主要包括DFP拟牛顿法,BFGS拟牛顿法。
二、DFP拟牛顿法
1、DFP拟牛顿法简介


,可以得到:

2、DFP校正方法的推导
,其中
的向量。
。
可以简化为:

代入上式:

代入上式:

为实数
的向量。上式中,参数a和
解的可能性有很多,我们取特殊的情况,假设
。则:


则:

3、DFP拟牛顿法的算法流程
对称正定,
由上述的DFP校正公式确定,那么
对称正定的充要条件是
。

DFP拟牛顿法的算法流程如下:
4、求解具体的优化问题

。
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from numpy import *
#fun
def fun(x):
return 100 * (x[0,0] ** 2 - x[1,0]) ** 2 + (x[0,0] - 1) ** 2
#gfun
def gfun(x):
result = zeros((2, 1))
result[0, 0] = 400 * x[0,0] * (x[0,0] ** 2 - x[1,0]) + 2 * (x[0,0] - 1)
result[1, 0] = -200 * (x[0,0] ** 2 - x[1,0])
return result
dfp.py
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from numpy import *
from function import *
def dfp(fun, gfun, x0):
result = []
maxk = 500
rho = 0.55
sigma = 0.4
m = shape(x0)[0]
Hk = eye(m)
k = 0
while (k < maxk):
gk = mat(gfun(x0))#计算梯度
dk = -mat(Hk)*gk
m = 0
mk = 0
while (m < 20):
newf = fun(x0 + rho ** m * dk)
oldf = fun(x0)
if (newf < oldf + sigma * (rho ** m) * (gk.T * dk)[0,0]):
mk = m
break
m = m + 1
#DFP校正
x = x0 + rho ** mk * dk
sk = x - x0
yk = gfun(x) - gk
if (sk.T * yk > 0):
Hk = Hk - (Hk * yk * yk.T * Hk) / (yk.T * Hk * yk) + (sk * sk.T) / (sk.T * yk)
k = k + 1
x0 = x
result.append(fun(x0))
return result
testDFP.py
[python] view plain copy 在CODE上查看代码片派生到我的代码片
#coding:UTF-8 数据分析师培训
'''''
Created on 2015年5月19日
@author: zhaozhiyong
'''
from bfgs import *
from dfp import dfp
import matplotlib.pyplot as plt
x0 = mat([[-1.2], [1]])
result = dfp(fun, gfun, x0)
n = len(result)
ax = plt.figure().add_subplot(111)
x = arange(0, n, 1)
y = result
ax.plot(x,y)
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26