
简单易学的机器学习算法—AdaBoost
一、集成方法(Ensemble Method)
集成方法主要包括Bagging和Boosting两种方法,随机森林算法是基于Bagging思想的机器学习算法,在Bagging方法中,主要通过对训练数据集进行随机采样,以重新组合成不同的数据集,利用弱学习算法对不同的新数据集进行学习,得到一系列的预测结果,对这些预测结果做平均或者投票做出最终的预测。AdaBoost算法和GBDT(Gradient Boost Decision Tree,梯度提升决策树)算法是基于Boosting思想的机器学习算法。在Boosting思想中是通过对样本进行不同的赋值,对错误学习的样本的权重设置的较大,这样,在后续的学习中集中处理难学的样本,最终得到一系列的预测结果,每个预测结果有一个权重,较大的权重表示该预测效果较好,详细的思想可见博文“简单易学的机器学习算法——集成方法(Ensemble Method)”。
二、AdaBoost算法思想
其中,是符号函数。具体过程可见下图所示:
上述为AdaBoost的基本原理,下面给出AdaBoost算法的流程:
AdaBoost算法是一种具有很高精度的分类器,其实AdaBoost算法提供的是一种框架,在这种框架下,我们可以使用不同的弱分类器,通过AdaBoost框架构建出强分类器。下面我们使用单层决策树构建一个分类器处理如下的分类问题:
python] view plain copy
#coding:UTF-8
'''''
Created on 2015年6月15日
@author: zhaozhiyong
'''
from numpy import *
def loadSimpleData():
datMat = mat([[1., 2.1],
[2., 1.1],
[1.3, 1.],
[1., 1.],
[2., 1.]])
classLabels = mat([1.0, 1.0, -1.0, -1.0, 1.0])
return datMat, classLabels
def singleStumpClassipy(dataMat, dim, threshold, thresholdIneq):
classMat = ones((shape(dataMat)[0], 1))
#根据thresholdIneq划分出不同的类,在'-1'和'1'之间切换
if thresholdIneq == 'left':#在threshold左侧的为'-1'
classMat[dataMat[:, dim] <= threshold] = -1.0
else:
classMat[dataMat[:, dim] > threshold] = -1.0
return classMat
def singleStump(dataArr, classLabels, D):
dataMat = mat(dataArr)
labelMat = mat(classLabels).T
m, n = shape(dataMat)
numSteps = 10.0
bestStump = {}
bestClasEst = zeros((m, 1))
minError = inf
for i in xrange(n):#对每一个特征
#取第i列特征的最小值和最大值,以确定步长
rangeMin = dataMat[:, i].min()
rangeMax = dataMat[:, i].max()
stepSize = (rangeMax - rangeMin) / numSteps
for j in xrange(-1, int(numSteps) + 1):
#不确定是哪个属于类'-1',哪个属于类'1',分两种情况
for inequal in ['left', 'right']:
threshold = rangeMin + j * stepSize#得到每个划分的阈值
predictionClass = singleStumpClassipy(dataMat, i, threshold, inequal)
errorMat = ones((m, 1))
errorMat[predictionClass == labelMat] = 0
weightedError = D.T * errorMat#D是每个样本的权重
if weightedError < minError:
minError = weightedError
bestClasEst = predictionClass.copy()
bestStump['dim'] = i
bestStump['threshold'] = threshold
bestStump['inequal'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrain(dataArr, classLabels, G):
weakClassArr = []
m = shape(dataArr)[0]#样本个数
#初始化D,即每个样本的权重
D = mat(ones((m, 1)) / m)
aggClasEst = mat(zeros((m, 1)))
for i in xrange(G):#G表示的是迭代次数
bestStump, minError, bestClasEst = singleStump(dataArr, classLabels, D)
print 'D:', D.T
#计算分类器的权重
alpha = float(0.5 * log((1.0 - minError) / max(minError, 1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print 'bestClasEst:', bestClasEst.T
#重新计算每个样本的权重D
expon = multiply(-1 * alpha * mat(classLabels).T, bestClasEst)
D = multiply(D, exp(expon))
D = D / D.sum()
aggClasEst += alpha * bestClasEst
print 'aggClasEst:', aggClasEst
aggErrors = multiply(sign(aggClasEst) != mat(classLabels).T, ones((m, 1)))
errorRate = aggErrors.sum() / m
print 'total error:', errorRate
if errorRate == 0.0:
break
return weakClassArr
def adaBoostClassify(testData, weakClassify):
dataMat = mat(testData)
m = shape(dataMat)[0]
aggClassEst = mat(zeros((m, 1)))
for i in xrange(len(weakClassify)):#weakClassify是一个列表
classEst = singleStumpClassipy(dataMat, weakClassify[i]['dim'], weakClassify[i]['threshold'], weakClassify[i]['inequal'])
aggClassEst += weakClassify[i]['alpha'] * classEst
print aggClassEst
return sign(aggClassEst)
if __name__ == '__main__':
datMat, classLabels = loadSimpleData()
weakClassArr = adaBoostTrain(datMat, classLabels, 30)
print "weakClassArr:", weakClassArr
#test
result = adaBoostClassify([1, 1], weakClassArr)
print result
最终的决策树序列:
weakClassArr: [{'threshold': 1.3, 'dim': 0, 'inequal': 'left', 'alpha': 0.6931471805599453}, {'threshold': 1.0, 'dim': 1, 'inequal': 'left', 'alpha': 0.9729550745276565}, {'threshold': 0.90000000000000002, 'dim': 0, 'inequal': 'left', 'alpha': 0.8958797346140273}]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02