
简单易学的机器学习算法—AdaBoost
一、集成方法(Ensemble Method)
集成方法主要包括Bagging和Boosting两种方法,随机森林算法是基于Bagging思想的机器学习算法,在Bagging方法中,主要通过对训练数据集进行随机采样,以重新组合成不同的数据集,利用弱学习算法对不同的新数据集进行学习,得到一系列的预测结果,对这些预测结果做平均或者投票做出最终的预测。AdaBoost算法和GBDT(Gradient Boost Decision Tree,梯度提升决策树)算法是基于Boosting思想的机器学习算法。在Boosting思想中是通过对样本进行不同的赋值,对错误学习的样本的权重设置的较大,这样,在后续的学习中集中处理难学的样本,最终得到一系列的预测结果,每个预测结果有一个权重,较大的权重表示该预测效果较好,详细的思想可见博文“简单易学的机器学习算法——集成方法(Ensemble Method)”。
二、AdaBoost算法思想
其中,是符号函数。具体过程可见下图所示:
上述为AdaBoost的基本原理,下面给出AdaBoost算法的流程:
AdaBoost算法是一种具有很高精度的分类器,其实AdaBoost算法提供的是一种框架,在这种框架下,我们可以使用不同的弱分类器,通过AdaBoost框架构建出强分类器。下面我们使用单层决策树构建一个分类器处理如下的分类问题:
python] view plain copy
#coding:UTF-8
'''''
Created on 2015年6月15日
@author: zhaozhiyong
'''
from numpy import *
def loadSimpleData():
datMat = mat([[1., 2.1],
[2., 1.1],
[1.3, 1.],
[1., 1.],
[2., 1.]])
classLabels = mat([1.0, 1.0, -1.0, -1.0, 1.0])
return datMat, classLabels
def singleStumpClassipy(dataMat, dim, threshold, thresholdIneq):
classMat = ones((shape(dataMat)[0], 1))
#根据thresholdIneq划分出不同的类,在'-1'和'1'之间切换
if thresholdIneq == 'left':#在threshold左侧的为'-1'
classMat[dataMat[:, dim] <= threshold] = -1.0
else:
classMat[dataMat[:, dim] > threshold] = -1.0
return classMat
def singleStump(dataArr, classLabels, D):
dataMat = mat(dataArr)
labelMat = mat(classLabels).T
m, n = shape(dataMat)
numSteps = 10.0
bestStump = {}
bestClasEst = zeros((m, 1))
minError = inf
for i in xrange(n):#对每一个特征
#取第i列特征的最小值和最大值,以确定步长
rangeMin = dataMat[:, i].min()
rangeMax = dataMat[:, i].max()
stepSize = (rangeMax - rangeMin) / numSteps
for j in xrange(-1, int(numSteps) + 1):
#不确定是哪个属于类'-1',哪个属于类'1',分两种情况
for inequal in ['left', 'right']:
threshold = rangeMin + j * stepSize#得到每个划分的阈值
predictionClass = singleStumpClassipy(dataMat, i, threshold, inequal)
errorMat = ones((m, 1))
errorMat[predictionClass == labelMat] = 0
weightedError = D.T * errorMat#D是每个样本的权重
if weightedError < minError:
minError = weightedError
bestClasEst = predictionClass.copy()
bestStump['dim'] = i
bestStump['threshold'] = threshold
bestStump['inequal'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrain(dataArr, classLabels, G):
weakClassArr = []
m = shape(dataArr)[0]#样本个数
#初始化D,即每个样本的权重
D = mat(ones((m, 1)) / m)
aggClasEst = mat(zeros((m, 1)))
for i in xrange(G):#G表示的是迭代次数
bestStump, minError, bestClasEst = singleStump(dataArr, classLabels, D)
print 'D:', D.T
#计算分类器的权重
alpha = float(0.5 * log((1.0 - minError) / max(minError, 1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print 'bestClasEst:', bestClasEst.T
#重新计算每个样本的权重D
expon = multiply(-1 * alpha * mat(classLabels).T, bestClasEst)
D = multiply(D, exp(expon))
D = D / D.sum()
aggClasEst += alpha * bestClasEst
print 'aggClasEst:', aggClasEst
aggErrors = multiply(sign(aggClasEst) != mat(classLabels).T, ones((m, 1)))
errorRate = aggErrors.sum() / m
print 'total error:', errorRate
if errorRate == 0.0:
break
return weakClassArr
def adaBoostClassify(testData, weakClassify):
dataMat = mat(testData)
m = shape(dataMat)[0]
aggClassEst = mat(zeros((m, 1)))
for i in xrange(len(weakClassify)):#weakClassify是一个列表
classEst = singleStumpClassipy(dataMat, weakClassify[i]['dim'], weakClassify[i]['threshold'], weakClassify[i]['inequal'])
aggClassEst += weakClassify[i]['alpha'] * classEst
print aggClassEst
return sign(aggClassEst)
if __name__ == '__main__':
datMat, classLabels = loadSimpleData()
weakClassArr = adaBoostTrain(datMat, classLabels, 30)
print "weakClassArr:", weakClassArr
#test
result = adaBoostClassify([1, 1], weakClassArr)
print result
最终的决策树序列:
weakClassArr: [{'threshold': 1.3, 'dim': 0, 'inequal': 'left', 'alpha': 0.6931471805599453}, {'threshold': 1.0, 'dim': 1, 'inequal': 'left', 'alpha': 0.9729550745276565}, {'threshold': 0.90000000000000002, 'dim': 0, 'inequal': 'left', 'alpha': 0.8958797346140273}]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15