
在处理多分类问题时,无序多分类Logistic回归是一种强大的统计方法,特别适用于具有多个无序类别的情况。通过以下Python示例,我们将演示如何有效实现这一方法,以及评估模型性能。
无序多分类Logistic回归广泛应用于数据科学和机器学习领域,为处理复杂分类问题提供了便利。让我们一起通过以下步骤深入了解其应用:
首先,让我们导入所需的库,包括numpy、pandas、matplotlib以及sklearn中的LogisticRegression。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, cohen_kappa_score
我们将使用经典的鸢尾花数据集(Iris Dataset)作为示例。该数据集包含150个样本,每个样本具有4个特征,并分属于3个类别之一。
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
将数据集划分为训练集和测试集,常用比例为80%训练,20%测试。
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
使用LogisticRegression类训练模型,设置multi_class='auto'以自动选择适当的多分类策略。
# 创建Logistic回归模型
model = LogisticRegression(penalty='l2', solver='liblinear', multi_class='auto', random_state=42)
# 训练模型
model.fit(X_train, y_train)
利用训练好的模型对测试集进行预测。
# 对测试集进行预测
y_pred = model.predict(X_test)
通过混淆矩阵、分类报告和Kappa系数来评估模型性能。
# 生成混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print("混淆矩阵:")
print(cm)
# 生成分类报告
cr = classification_report(y_test, y_pred)
print("分类报告:")
print(cr)
# 计算Kappa系数
kappa = cohen_kappa_score(y_test, y_pred)
print("Kappa系数:", kappa)
通过绘制混淆矩阵,我们可以更直观地了解模型的预测结果。
# 绘制混淆矩阵
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('混淆矩阵')
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.2f'),
horizontalalignment="center",
color="white" if cm[i, j] > cm.max() / 2 else "black")
plt.ylabel('真实标签')
plt.xlabel('预测标签')
plt.tight_layout()
plt.show()
通过上述步骤,我们成功实现了无序多分类Logistic回
归模型的训练、预测和评估过程。接下来,我们将展示完整的Python代码实现。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, cohen_kappa_score
from sklearn.datasets import load_iris
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建Logistic回归模型
model = LogisticRegression(penalty='l2', solver='liblinear', multi_class='auto', random_state=42)
# 训练模型
model.fit(X_train, y_train)
# 对测试集进行预测
y_pred = model.predict(X_test)
# 生成混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print("混淆矩阵:")
print(cm)
# 生成分类报告
cr = classification_report(y_test, y_pred)
print("分类报告:")
print(cr)
# 计算Kappa系数
kappa = cohen_kappa_score(y_test, y_pred)
print("Kappa系数:", kappa)
# 绘制混淆矩阵
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.colorbar()
tick_marks = np.arange(len(iris.target_names))
plt.xticks(tick_marks, iris.target_names, rotation=45)
plt.yticks(tick_marks, iris.target_names)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], '.2f'),
horizontalalignment="center",
color="white" if cm[i, j] > cm.max() / 2 else "black")
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.tight_layout()
plt.show()
通过以上代码,我们实现了无序多分类Logistic回归模型的训练、预测和评估,并通过混淆矩阵和其他指标来评估模型性能。您可以根据自己的数据集和需求进行相应地修改和调整。希望这对您有所帮助!如果需要进一步的帮助或解释,请随时告诉我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29