京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,一个新的相对论时代
不久前的一个周末,我在成都参加希捷公司的年会。
这是全球数一数二的硬盘供应商,年会熙熙攘攘,盛况空前。在国内各项重要的经济指标均为下行的情况下,希捷公司的出货量仍然保持着增长。事实上,整个存储器行业这几年都在连续逆势增长。
时代的轮廓如此清晰。人们在减少饮料、成品油甚至住房的消费,却在花更多的钱保存数据。
演讲中,我提到,今天的社会治理、商业管理以及个人生活,无不在快速地数据化,即事实和细节被广泛地记录下来,通过这些记录,消逝的世界可以再现,从而进行分析和预测,人类历史上一些精细的、微妙的、隐性的、曾经难以捕捉的关系和知识,现在都可以捕捉到,快速上升为显性的知识。
我的结论是,通过数据,人类从来没有如此客观地认知我们每天生活的世界。
从成都返回杭州,有几个小时我在空中飞行。回到家,一封邮件已经静静地躺在我的邮箱。里面是迫切且尖锐的提问:
“涂先生,这个时代,让我越来越困惑,我是一名资深的数据分析师,但随着数据的增多,我甚至成了一名大数据的怀疑论者……之所以没有在现场提问,是担心我的挑战给大数据的信奉者泼上冷水……”
他的问题是,数据越来越多,但他却经常感受到,他离事实越来越远,通过数据,无法发现真正的真相。
换句话说,虽然数据是真实的,但它却不一定符合真正的事实。
这是一个新的相对论,数据相对论。爱因斯坦的相对论是关于时空和引力,新的相对论是关于数据和事实。
数据永远在追赶事实
美国政府曾经竭尽脑汁,一直想掌握全国真正的人口数量。1860年代开始,美国总统就开始给美国的普通公民写信,请他们不要因为害怕人口普查而隐瞒人数,他以总统的名义保证,这些数据只是为了掌握美国的真实人口数量,而不会用于征税、征兵和法庭调查等其它用途。此后历届美国总统都致力于排除人为因素,力图保证数据的客观性。他们还想方设法缩短普查时间,最初一次普查要两年时间才能完成,到后来慢慢缩短至两个月,乃至两三天。
每时每刻,都有人出生、死亡或者濒临死亡,他们发生在不同的家庭、医院、甚至野外,现实不会静止以等待你给它画像,任何一次人为组织的人口普查,都没有办法在同一个时间点掌握全部的这些事实,从而计算出一个时间点这个世界真正的人口数目。
直到今天,信息技术、互联网、手机如此发达,这个问题还没有解决。
人类是这个世界的灵长,迄今为止仍无法准确的掌握这个星球上有多少同类,遑论其他?
世间万物,一颗红豆、一碗牛肉面、一台汽车、一段感情,其中的知识,都往往丰富得我们难以想象,所谓一花一世界、一叶一菩提。
世界之大、包罗万象、周行不殆、须臾万变,人类就像刻舟求剑的楚人一样,能掌握的永远只是某一个节点某一个范围内的小事实,有混乱和困惑是再自然不过的事了。
但在纷繁复杂、持续演变的世界,人类又在不断努力。纵使人口不断变动,美国政府亦不断改进数据获取方式,以提高效率、逼近真相。今天的美国人口普查局,已经开发了一个“人口钟”(population clock),每分钟可以预测一次美国人口的变化情况。
数据永远在追赶事实,就像永不停歇的钟摆。在追求真理的道路上,我们进入了一个更为清晰的相对论时代。
数据仅记录事实的一个侧面
十年前,我刚到美国留学。开学不久,就学到了一件重要的事情,必须区分“事实”和“观点”,至今还记得,教授在课堂上第一次引用这句名言:“每个人都可以有他自己的观点,但不可以有他自己的事实”,我从此引为圭臬。
但随着经验和阅历的增长,我又感悟到,大千世界,之所以意见纷争、共识稀少,还是因为每个人拥有他自己的事实,事实确实只有一个,但一个事实却有千万面,人因为自己的局限,往往只能看到自己认同的那一面,很少有人能面面俱到、看到一个事实的全貌。
导致的结果,各人还是各有“事实”。
这真是个很可怕的结果,数据越多,分歧也可能越多,因为每一个不同的观点,都能找到相应的数据来支持,一定程度上,比没有数据还糟糕。
在我还没到阿里巴巴工作之前,阿里就有业务线上的高管咨询我,说阿里有很多数据,也有很多部门,仅仅预测顾客下一件可能要买的东西,就有9个部门在做,这些部门,往往得出不一样的结论,而且都认为自己的预测最占理、最准确!
我的第一反应,是这些部门依据的应该是各自收集的、不同环节的数据,一问果然如此。我建议说,阿里的正确做法,应该是合并部门、归整数据,形成一个多维度的、尽可能大的数据,再进行预测。
这个案例其实隐藏着一个巨大的时代风险。数量庞大的数据,将导致“人人皆有理”。一个人要做出一个与其它人迥异的结论,总可以找到相应的数据来支撑自己。
其中的本因,就是数据再多,我们都可能无法掌握事实的全貌。数据再大都不是事实,但它逼近事实。事实确实是只有一个,但有千万个棱面,任何一组数据,可能都只仅仅描绘了“一个”面。
如果有上帝,那只有他的眼睛才能看到万事万物的全貌。人,不可以。
再大的数据,也不可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27