京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,用「大、快、杂、疑」四字箴言带你认识大数据
你可能有注意到,「大数据(Big Data)」在我们的生活裡已经掀起滔天巨浪,继云端运算(Cloud Computing)之后,俨然成为学术界跟科技业中最热门的潮字(Buzz Word),似乎每家公司都在进行有关的研究,三句不离大数据。究竟大数据是怎么出现,又代表着什么意思呢?
大数据(Big Data),巨量资料爆炸的时代
大数据(Big Data)—— 或称巨量资料,顾名思义,是指大量的资讯,当资料量庞大到资料库系统无法在合理时间内进行储存、运算、处理,分析成能解读的资讯时,就称为大数据。
“Big data is data that exceeds the processing capacity of conventional database systems.”
这些巨量资料中有着珍贵的讯息,像是关联性(Unknown Correlation)、未显露的模式(Hidden Patterns)、市场趋势(Market Trend),可能埋藏着前所未有的知识跟应用等着被我们挖掘发现;但由于资料量太庞大,流动速度太快,现今科技无法处理分析,促使我们不断研发出新一代的资料储存设备及科技,希望从大数据中萃取出那些有价值的资讯。
「Big Data」这个词最早由 IBM 提出,2010 年才真正开始受到注目,并成为专业用语登上维基百科1,算是「大数据」的正式问世。而在 2012 年时,《纽约时报》的专栏文章「The Age of Big Data2」更是宣告了「大数据时代」的来临。值得一提的是,大数据并不是什么新兴的概念,事实上,欧洲粒子物理研究中心 (CERN)的科学家已经面对巨量资料的问题好几十年了,处理着每秒上看 PB (Peta Bytes,註:PB = 1,024 TB)的资料量3。
TED-Ed 的影片讲解 Big Data 概念,简单又好懂:
一般来说,大数据涵盖的範围很广,定义也各家歧异,2012 年 Gartner 公司的分析师 Douglas Laney 给予大数据一个全新定义4:「大数据是大量、高速、及/或类型多变的资讯资产,它需要全新的处理方式,去促成更强的决策能力、洞察力与最佳化处理。」
于是大部份机构跟公司都将大数据的特性归类为「3Vs」或「4Vs」–– 资料量 Volume、资料传输速度 Velocity、资料类型(Variety),以及后来提出的第四个 V —— 真实性 Veracity。以下整理了 4Vs 简单的定义跟解释,可以从这四点切入认识大数据。
Volume 资料量
以前人们「手动」在表格中记录、累积出数据;现在数据是由机器、网路、人与人之间的社群互动来生成。你现在正在点击的滑鼠、来电、简讯、网路搜寻、线上交易... 都正在生成累积成庞大的数据,因此资料量很容易就能达到数 TB(Tera Bytes,兆位元组),甚至上看 PB(Peta Bytes,千兆位元组)或 EB(Exabytes,百万兆位元组)的等级。
Velocity 资料输入输出速度
资料的传输流动(data streaming)是连续且快速的,随着越来越多的机器、网路使用者,社群网站、搜寻结果每秒都在成长,每天都在输出更多的内容。公司跟机构要处理庞大的资讯大潮向他们袭来,而回应、反应这些资料的速度也成为他们最大的挑战,许多资料要能即时得到结果才能发挥最大的价值,因此也有人会将 Velocity 认为是「时效性」。
Variety 资料类型
大数据的来源种类包罗万象,十分多样化,如果一定要把资料分类的话,最简单的方法是分两类,结构化与非结构化。早期的非结构化资料主要是文字,随着网路的发展,又扩展到电子邮件、网页、社交媒体、视讯,音乐、图片等等,这些非结构化的资料造成储存(storage)、探勘(mining)、分析(analyzing)上的困难。
Veracity 真实性
这个词由在 Express Scripts 担任首席数据官(Chief Data Officer, CDO)的 Inderpal Bhandar 在波士顿大数据创新高峰会(Big Data Innovation Summit)的演讲中提出,认为大数据分析中应该加入这点做考虑,分析并过滤资料有偏差、伪造、异常的部分,防止这些「dirty data」损害到资料系统的完整跟正确性,进而影响决策。
大数据特性,谨记四字箴言:「大、快、杂、疑」
大数据资料量庞「大」(Volume)、变化飞「快」(Velocity),种类繁「杂」(Variety),以及真伪存「疑」(Veracity)。尤其在这资讯大爆炸时代,这些资料变得又多、又快、又杂、又真伪难分。
当然在「大数据」一词像病毒一样,侵入我们生活中的各个层面,也有越来越多人提出更多的「V」来解释大数据,像是 Volatility、Validity、Value、Victory 等,这些分歧的意见在这就不多详述,只要知道有这些说法、以后听到别人说到「7Vs」时不要觉得惊讶就行啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27