京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分享
数据科学有志之士最常见的问题之一是 "对于机器学习,我需要知道多少数学?" 希望进入机器学习领域的学生往往将数学视为一个巨大的入门障碍。
行业中的守门人对这种担忧没有帮助,他们给学生贴上了不合格的标签,除非他们拥有该学科的硕士或博士学位。
那么,为了在数据科学行业工作,你需要知道多少数学?
答案是。没有你想象的那么多。
大多数公司在数据的帮助下解决非常类似的用例。他们要求数据科学家建立机器学习模型,可以预测客户流失,进行细分,并预测销售。
用于解决这些问题的方法是相似的,而且任务变得相当重复。没有必要重新发明轮子,他们使用开箱即用的ML算法。
即使出现了需要建立自定义机器学习模型的情况,对特定主题的直观理解也是足够的。你不需要去深究,也绝对不需要成为数学专家来成为数据科学家。
例如,我们知道梯度下降是用来寻找线性回归中的最佳拟合线的。你不需要开始学习如何解决微分方程,你只需要了解微积分的原理,就可以了解到这是如何做到的。
同样,如果你要用Tensorflow构建一个神经网络--你需要进行大量的矩阵操作,但你将在计算机程序的帮助下进行。由于这个原因,你不需要回去练习解代数方程。你只需要了解它们是如何工作的。
在这篇文章中,我将为你指出一些资源,帮助你开始学习数据科学的数学。我将专注于三个领域--线性代数、微积分和统计。
线性代数
线性代数--从基础到前沿。edX上的这门课程将在本科水平上教你线性代数。它从一个缓慢的空间开始,只要你有高中水平的数学知识,你就可以学习这个课程。
这门课程最好的地方是,它用Matlab中的实际例子教你线性代数,这让你通过算法和编程的视角来看待这个学科。如果你的目标是学习机器学习的线性代数,这种学习方法特别有用。
这个课程可以免费试听。如果你想获得结业证书,你可以申请财政援助。
3Blue1Brown--《线性代数精华》:我以前没有上过这门课,但在我自己寻找数学学习资源的过程中,曾多次遇到它。
许多有志于机器学习的人对这门课程深信不疑,因为它为学习者提供了对线性代数的概念性理解。与其学习任意的公式或机械地推导它们,你将获得对线性代数如何工作的直觉。如果你的最终目标是将这些概念应用于机器学习模型,这将是非常有帮助的。
微积分
我推荐两门为机器学习学习微积分的课程。微积分的本质》是3Blue1Brown开设的一门伟大的微积分入门课程。同样,这将为你提供对微积分概念的直观理解,并深入解释公式背后的意义,而不仅仅是让你记住它们。
接下来,你可以学习3Blue1Brown的神经网络系列。如果你知道如何使用Keras等库实现神经网络,但并不真正了解这些模型背后的工作原理,你应该学习这门课程。它为你提供了梯度下降算法的全面解释,以及其背后的微积分概念。
统计数字
概率与统计:To p or not to p? ?-库塞拉
这是我所学过的最好的统计学入门课程之一,由伦敦大学提供。这门课程是针对主修非数学专业的学生,如商业和金融。
正因为如此,统计学概念的解释方式简单易懂,并有许多真实世界的例子。
学习本课程后,你将对描述性和推断性统计、不同的抽样分布、抽样技术、置信区间以及P值的计算方法有所了解。
所有这些概念都可以直接应用于现实世界的数据分析。
统计学习-edX
这是另一个学习机器学习模型背后的直觉的优秀课程。
与本列表中的其他资源一样,本课程不太注重数学公式,而是以概念的方式解释机器学习模型。
然而,要学习这门课程,建议有一些微积分知识,因为导师倾向于使用符号,否则可能会使你感到困惑。
你将学习线性和逻辑回归等概念,以及正则化技术,如脊和套索回归,以及何时使用它们。有一整堂课专门讨论用于减轻过拟合的技术,并解释了这些技术背后的基本数学直觉。
这是我上过的最有帮助的课程之一,因为它帮助我不再把机器学习模型当作黑盒子。我对不同类型的模型应该用在什么地方,什么时候应该应用降维,以及什么时候执行不同种类的特征选择技术有了了解。
我花了很多时间试图回到过去,学习本科阶段的微积分和线性代数。然而,尽管花了很多时间学习公式和解微分方程,我的知识还是有脱节,因为我从来没有完全理解这些概念与机器学习算法的关系。
上述资源是突破这一障碍的好方法,因为它们让你对机器学习背后的数学有一个概念性的理解,而不是把你带入复杂公式和定理的兔子洞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02