京公网安备 11010802034615号
经营许可证编号:京B2-20210330
阅读这组围绕数据科学的幽默、有见地的名言,希望能照亮你的一天,让你开怀大笑!
分享2
作者:Rupa Mahanti,顾问
数据科学是一门广泛的学科,几乎涉及所有商业领域,从金融到公用事业,从制造业到医疗保健和生命科学。数据科学是当前数字世界和时代中最流行的流行语之一。然而,围绕这个词有很多混淆,不同的人以不同的方式定义这个词。以下是围绕数据科学定义的一些幽默、有见地的名言,希望能照亮你的一天,并让你发笑。
"数据科学的第一条规则是:不要问如何定义数据科学。"
-Josh Bloom(Azam 2014)
"关于数据科学。它是这些跨学科、非学科的空间之一,人们以有趣的方式完成东西,但甚至不知道自己该怎么称呼它。"
-Cathryn Carson (Azam 2014)
"定义数据科学就像定义互联网一样,问10个人,你会得到10个不同的答案。"
-Micaela S. Parker, Arlyn E. Burgess, and Philip E. Bourne (Parker et al. 2021)
"数据科学不过是新瓶装旧酒的统计学版本,有不同的领域。"
-兰迪-巴特利(Bartlett 2015年)
"'数据科学'这个实际的术语是那种既意味着一切又意味着什么的术语。"
-尼克-亚当斯(Azan 2014)
"数据科学就是基于你所拥有的数据--或者往往是你所没有的数据,提出有趣的问题。"
-萨拉-贾维斯(达莫迪2020年)
"'数据科学'被定义为'数据科学家'所做的事情"。
-Harlan D. Harris (Harris 2011)
"数据科学是数据的土木工程"。
-Cathy O'Neil和Rachel Schutt(O'Neil和Schutt 2013年)
"数据科学有一个奇怪的特点,就是它是少数几个让从业者没有领域的研究领域之一。"
-Mikhail Mew(Mew 2021年)
"数据科学是使数据有用的科学。"
-Cassie Kozykorv (Kozykorv 2018)
"数据科学不是关于数据的数量,而是关于质量。"
-Joo Ann Lee (Coresignal 2021)
"数据科学的座右铭:如果一开始不成功;就叫它1.0版本。"
-Pranay Pathole
"数据科学很像烹饪。虽然一开始原材料可能很吸引人,但直到你真正能够开始切片、切块,并最终端出美味的东西来吞食,乐趣才会开始。大多数时候,你最终会得到一道菜,但在数据科学领域,我们称之为数据洞察力"。
-理查德-科内利斯-苏万迪(苏万迪2020年)
"数据科学80%是准备数据,20%是抱怨准备数据。"
-理查德-科内利斯-苏万迪(苏万迪2020年)
"数据科学是艺术和科学的结合,只受限于赋予数据科学家探索的自由度加上他们的创造能力。"
-Ken Poirot
"数据科学,正如它所实践的那样,是一种融合了以红牛为燃料的黑客技术和以浓咖啡为灵感的统计学。"
-迈克-德里斯科尔
"数据科学不仅仅是统计学,因为当统计学家完成了对完美模型的理论研究后,如果他们的工作取决于R的话,很少有人能把一个以表格为单位的文件读成R。"
-迈克-德里斯科尔(O'Neil和Schutt,2013)。
"数据科学。拓展统计学领域技术领域的行动计划"。
-William Cleaveland (Cleaveland 2001)
"学习数据科学就像去健身房,只有坚持不懈地做,你才会受益。"
-Moez Ali (Suwandi, 2022)
"很多人认为数据科学是一项工作,但更准确的是把它看成是一种思维方式,一种通过科学方法提取见解的手段。"
-Thilo Huellmann (Coresignal 2021)
笑声的确是最好的良药,数据专业人员的生活中当然需要更多的幽默感。下次你打算在数据领域进行演讲或展示时,如果你以一些有趣或古怪的数据引言开始,以激发你的同事和客户的兴趣,那将是非常好的。它们不仅能缓和气氛,而且还能给出一个没有人会认为如此有用的建议,因为它们是搞笑的。为了享受更多这样的引言,请获得这本书--《数据幽默》。有趣的数据、大数据、统计学和数据科学名言、双关语和短语。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22