
阅读这组围绕数据科学的幽默、有见地的名言,希望能照亮你的一天,让你开怀大笑!
分享2
作者:Rupa Mahanti,顾问
数据科学是一门广泛的学科,几乎涉及所有商业领域,从金融到公用事业,从制造业到医疗保健和生命科学。数据科学是当前数字世界和时代中最流行的流行语之一。然而,围绕这个词有很多混淆,不同的人以不同的方式定义这个词。以下是围绕数据科学定义的一些幽默、有见地的名言,希望能照亮你的一天,并让你发笑。
"数据科学的第一条规则是:不要问如何定义数据科学。"
-Josh Bloom(Azam 2014)
"关于数据科学。它是这些跨学科、非学科的空间之一,人们以有趣的方式完成东西,但甚至不知道自己该怎么称呼它。"
-Cathryn Carson (Azam 2014)
"定义数据科学就像定义互联网一样,问10个人,你会得到10个不同的答案。"
-Micaela S. Parker, Arlyn E. Burgess, and Philip E. Bourne (Parker et al. 2021)
"数据科学不过是新瓶装旧酒的统计学版本,有不同的领域。"
-兰迪-巴特利(Bartlett 2015年)
"'数据科学'这个实际的术语是那种既意味着一切又意味着什么的术语。"
-尼克-亚当斯(Azan 2014)
"数据科学就是基于你所拥有的数据--或者往往是你所没有的数据,提出有趣的问题。"
-萨拉-贾维斯(达莫迪2020年)
"'数据科学'被定义为'数据科学家'所做的事情"。
-Harlan D. Harris (Harris 2011)
"数据科学是数据的土木工程"。
-Cathy O'Neil和Rachel Schutt(O'Neil和Schutt 2013年)
"数据科学有一个奇怪的特点,就是它是少数几个让从业者没有领域的研究领域之一。"
-Mikhail Mew(Mew 2021年)
"数据科学是使数据有用的科学。"
-Cassie Kozykorv (Kozykorv 2018)
"数据科学不是关于数据的数量,而是关于质量。"
-Joo Ann Lee (Coresignal 2021)
"数据科学的座右铭:如果一开始不成功;就叫它1.0版本。"
-Pranay Pathole
"数据科学很像烹饪。虽然一开始原材料可能很吸引人,但直到你真正能够开始切片、切块,并最终端出美味的东西来吞食,乐趣才会开始。大多数时候,你最终会得到一道菜,但在数据科学领域,我们称之为数据洞察力"。
-理查德-科内利斯-苏万迪(苏万迪2020年)
"数据科学80%是准备数据,20%是抱怨准备数据。"
-理查德-科内利斯-苏万迪(苏万迪2020年)
"数据科学是艺术和科学的结合,只受限于赋予数据科学家探索的自由度加上他们的创造能力。"
-Ken Poirot
"数据科学,正如它所实践的那样,是一种融合了以红牛为燃料的黑客技术和以浓咖啡为灵感的统计学。"
-迈克-德里斯科尔
"数据科学不仅仅是统计学,因为当统计学家完成了对完美模型的理论研究后,如果他们的工作取决于R的话,很少有人能把一个以表格为单位的文件读成R。"
-迈克-德里斯科尔(O'Neil和Schutt,2013)。
"数据科学。拓展统计学领域技术领域的行动计划"。
-William Cleaveland (Cleaveland 2001)
"学习数据科学就像去健身房,只有坚持不懈地做,你才会受益。"
-Moez Ali (Suwandi, 2022)
"很多人认为数据科学是一项工作,但更准确的是把它看成是一种思维方式,一种通过科学方法提取见解的手段。"
-Thilo Huellmann (Coresignal 2021)
笑声的确是最好的良药,数据专业人员的生活中当然需要更多的幽默感。下次你打算在数据领域进行演讲或展示时,如果你以一些有趣或古怪的数据引言开始,以激发你的同事和客户的兴趣,那将是非常好的。它们不仅能缓和气氛,而且还能给出一个没有人会认为如此有用的建议,因为它们是搞笑的。为了享受更多这样的引言,请获得这本书--《数据幽默》。有趣的数据、大数据、统计学和数据科学名言、双关语和短语。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10