京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当你在网上搜索时,大多数人都建议你在初级水平上呆上几年,然后再考虑转型或转到其他角色。与初级、中级和高级数据科学家相比,经验水平是有区别的。本文将介绍对所有工作角色的期望,以及向上爬的要求。
你是什么水平?
大多数人都会看数据科学家的技能、经验年限、教育水平、专业知识、管理技能等等。如何区分不同级别的数据科学家的区别,一个很好的理解是,你可以让数据科学家独自完成/处理一项任务多长时间,而不需要对他们进行检查。
用 "你可以让一个人独自完成/处理一项任务而不需要签到的时间有多长?"这个比喻,我们可以把不同的级别划分如下。:
- 初级数据科学家。你通常会每天签到,或者一天两次。他们将与中级和高级数据科学家进行大量的配对编程。
- 中级数据科学家。你将每周或每月检查几次,但是,他们应该有能力。他们还将与高级数据科学家进行配对编程,并在需要时为初级数据科学家提供建议和指导。
- 高级数据科学家。不需要向他们报到,因为他们完全有能力自己处理这个任务。
虽然人们的经验和技能水平很重要,但一个人拥有的知识和经验水平才是能够完成任务的关键。一个初级数据科学家可能会达到一个受阻的地步,并且不知道如何去克服它,而不去咨询高层。中级数据科学家也可能面临困难,但是,他们会更好地掌握如何自己克服困难。而高级数据科学家有足够的经验,能够把事情做好。即使这包括聘请专家或研究人员,他们也知道完成一个项目需要什么。
如果你正在寻找一份高级工作,问问自己 "别人可以让我独自完成/处理一项任务而不检查多久"。你必须对自己完全诚实,否则你将为自己的失败埋下隐患。我并不是说你不能设定目标,不能努力成为最伟大的人。我是说对你目前的经验水平要现实,以帮助你找到正确的角色,并在此基础上不断发展。
如何从初级到中级到高级?
这是一年的开始,我们都在记下我们的计划;与职业或个人有关。我们都在努力实现我们今年的目标。对于所有的数据科学家来说,这里有一些建议,告诉你如何在事业上取得进展,在阶梯上攀升,增加你的收入。
独立性
反思一下 "你能让一个人独自完成/处理一项任务而不检查的时间有多长?"这个问题,这都是基于独立的态度。由于缺乏经验和技能,年轻人往往会问更多的问题,而老年人有能力根据过去的经验做出决定。
这不应该吓到你,让你不敢问问题。问问题没有错,这是你学习的方式。如果你不犯错误,你就不需要经历学习过程,你将永远停滞不前。然而,不要每次都依赖你的同事和高级职员来指导你。当你有问题时,避免直接去找他们,试着自己去想办法。当你明白如何解决这个问题时,你会有一种成就感。如果你不确定你的解决方案,请询问你的经理的意见。他们会感谢你带着解决方案来找他们,而不仅仅是一个问题。
让自己处于不舒服的位置
当你在阴沟里的时候,许多伟大的事情发生了。你把自己从一个不舒服的、不熟悉的洞里爬出来。初中生通常从事较容易的工作,有时非常重复和无聊。如果你觉得自己已经准备好了,就向你的经理提出更具挑战性的任务,以学习和增长你的分析能力。
如果你成功地完成了任务,你的经理或高级数据科学家会认识到这一点,并为你推动晋升。
开始像高级人员那样思考
高级数据科学家可以单独处理任务,这不仅是因为他们的经验水平,而且还因为他们对企业目标的理解。大多数初级数据科学家的任务是孤立的,完成任务的过程不会比它是一个请求更进一步。通过更好地掌握企业的短期和长期目标,能够放眼全局,这将改善你在处理请求或试图解决一个问题时的思维方式。
高级数据科学家不仅根据他们的经验,而且还根据公司的需求做出决定,以帮助公司发展。学习高级数据科学家如何通过结对编程、每周团队建设或1-1的方式来接近和处理问题,将使你进入高级数据科学家的思维模式。
沟通与管理
这些是中级或高级数据科学家的主要软技能,因为他们会经常被要求提供建议、指导和帮助理解一个问题。除了数据团队的其他成员和他们的经理之外,许多初级数据科学家并不需要与许多同事交谈。
作为一名高级数据科学家,能够管理一个数据团队需要良好的沟通和管理技能,以确保业务的顺利进行。如果由高级数据科学家管理的项目出现问题,无论任务是否由他/她完成;他们仍然要承担责任。高级数据科学家应该提高警惕,在错误呈现给利益相关者之前,找出错误。
如果高级人员缺乏沟通,他/她的操作就会崩溃,很快就会意识到由于他们的无能,工作量会落到他们身上。与其要向利益相关者解释为什么输出是错误的,或者为什么做出了错误的决定,不如与你的数据团队进行管理和沟通以避免这些问题才是更好的解决办法。
反馈
“反馈是冠军的早餐。”
-Ken Blanchard
询问反馈是你自我提升的健康催化剂;无论是个人还是与职业相关的。向你的经理询问你的长处和短处,将帮助你了解什么对你有用,什么你需要改进。没有人是完美的,我们总是有办法让自己变得更好。优秀的球员希望被告知真相,因为他们想继续赢下去!"。
我希望这篇文章能帮助你了解你所处的水平,以及你需要做什么来达到下一个水平。我祝愿你在你的旅程中一切顺利!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15