
当你在网上搜索时,大多数人都建议你在初级水平上呆上几年,然后再考虑转型或转到其他角色。与初级、中级和高级数据科学家相比,经验水平是有区别的。本文将介绍对所有工作角色的期望,以及向上爬的要求。
你是什么水平?
大多数人都会看数据科学家的技能、经验年限、教育水平、专业知识、管理技能等等。如何区分不同级别的数据科学家的区别,一个很好的理解是,你可以让数据科学家独自完成/处理一项任务多长时间,而不需要对他们进行检查。
用 "你可以让一个人独自完成/处理一项任务而不需要签到的时间有多长?"这个比喻,我们可以把不同的级别划分如下。:
- 初级数据科学家。你通常会每天签到,或者一天两次。他们将与中级和高级数据科学家进行大量的配对编程。
- 中级数据科学家。你将每周或每月检查几次,但是,他们应该有能力。他们还将与高级数据科学家进行配对编程,并在需要时为初级数据科学家提供建议和指导。
- 高级数据科学家。不需要向他们报到,因为他们完全有能力自己处理这个任务。
虽然人们的经验和技能水平很重要,但一个人拥有的知识和经验水平才是能够完成任务的关键。一个初级数据科学家可能会达到一个受阻的地步,并且不知道如何去克服它,而不去咨询高层。中级数据科学家也可能面临困难,但是,他们会更好地掌握如何自己克服困难。而高级数据科学家有足够的经验,能够把事情做好。即使这包括聘请专家或研究人员,他们也知道完成一个项目需要什么。
如果你正在寻找一份高级工作,问问自己 "别人可以让我独自完成/处理一项任务而不检查多久"。你必须对自己完全诚实,否则你将为自己的失败埋下隐患。我并不是说你不能设定目标,不能努力成为最伟大的人。我是说对你目前的经验水平要现实,以帮助你找到正确的角色,并在此基础上不断发展。
如何从初级到中级到高级?
这是一年的开始,我们都在记下我们的计划;与职业或个人有关。我们都在努力实现我们今年的目标。对于所有的数据科学家来说,这里有一些建议,告诉你如何在事业上取得进展,在阶梯上攀升,增加你的收入。
独立性
反思一下 "你能让一个人独自完成/处理一项任务而不检查的时间有多长?"这个问题,这都是基于独立的态度。由于缺乏经验和技能,年轻人往往会问更多的问题,而老年人有能力根据过去的经验做出决定。
这不应该吓到你,让你不敢问问题。问问题没有错,这是你学习的方式。如果你不犯错误,你就不需要经历学习过程,你将永远停滞不前。然而,不要每次都依赖你的同事和高级职员来指导你。当你有问题时,避免直接去找他们,试着自己去想办法。当你明白如何解决这个问题时,你会有一种成就感。如果你不确定你的解决方案,请询问你的经理的意见。他们会感谢你带着解决方案来找他们,而不仅仅是一个问题。
让自己处于不舒服的位置
当你在阴沟里的时候,许多伟大的事情发生了。你把自己从一个不舒服的、不熟悉的洞里爬出来。初中生通常从事较容易的工作,有时非常重复和无聊。如果你觉得自己已经准备好了,就向你的经理提出更具挑战性的任务,以学习和增长你的分析能力。
如果你成功地完成了任务,你的经理或高级数据科学家会认识到这一点,并为你推动晋升。
开始像高级人员那样思考
高级数据科学家可以单独处理任务,这不仅是因为他们的经验水平,而且还因为他们对企业目标的理解。大多数初级数据科学家的任务是孤立的,完成任务的过程不会比它是一个请求更进一步。通过更好地掌握企业的短期和长期目标,能够放眼全局,这将改善你在处理请求或试图解决一个问题时的思维方式。
高级数据科学家不仅根据他们的经验,而且还根据公司的需求做出决定,以帮助公司发展。学习高级数据科学家如何通过结对编程、每周团队建设或1-1的方式来接近和处理问题,将使你进入高级数据科学家的思维模式。
沟通与管理
这些是中级或高级数据科学家的主要软技能,因为他们会经常被要求提供建议、指导和帮助理解一个问题。除了数据团队的其他成员和他们的经理之外,许多初级数据科学家并不需要与许多同事交谈。
作为一名高级数据科学家,能够管理一个数据团队需要良好的沟通和管理技能,以确保业务的顺利进行。如果由高级数据科学家管理的项目出现问题,无论任务是否由他/她完成;他们仍然要承担责任。高级数据科学家应该提高警惕,在错误呈现给利益相关者之前,找出错误。
如果高级人员缺乏沟通,他/她的操作就会崩溃,很快就会意识到由于他们的无能,工作量会落到他们身上。与其要向利益相关者解释为什么输出是错误的,或者为什么做出了错误的决定,不如与你的数据团队进行管理和沟通以避免这些问题才是更好的解决办法。
反馈
“反馈是冠军的早餐。”
-Ken Blanchard
询问反馈是你自我提升的健康催化剂;无论是个人还是与职业相关的。向你的经理询问你的长处和短处,将帮助你了解什么对你有用,什么你需要改进。没有人是完美的,我们总是有办法让自己变得更好。优秀的球员希望被告知真相,因为他们想继续赢下去!"。
我希望这篇文章能帮助你了解你所处的水平,以及你需要做什么来达到下一个水平。我祝愿你在你的旅程中一切顺利!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27