京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
一般在Python当中,我们用于绘制图表的模块最基础的可能就是matplotlib了,今天小编分享几个用该模块进行可视化制作的技巧,帮助你绘制出更加高质量的图表。
同时本篇文章的第二部分是用Python来制作可视化动图,让你更加清楚的了解到数据的走势
最开始,我们先导入数据集,并且导入我们需要用到的库
import pandas as pd import matplotlib.pyplot as plt
plt.style.use("seaborn-darkgrid") # 读取数据 aapl = pd.read_csv("AAPL.csv") print(aapl.head())
output
Date Open High ... Close Adj Close Volume 0 2021-9-30 143.660004 144.380005 ... 141.500000 141.293793 88934200 1 2021-10-1 141.899994 142.919998 ... 142.649994 142.442108 94639600 2 2021-10-4 141.759995 142.210007 ... 139.139999 138.937225 98322000 3 2021-10-5 139.490005 142.240005 ... 141.110001 140.904358 80861100 4 2021-10-6 139.470001 142.149994 ... 142.000000 141.793060 83221100
上面的代码我们用到的是“苹果”公司2021年的9月31日到12月31日的股价走势,我们先来简单的画一张折线图,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
output
上面的折线图看着就有点单调和简单,我们就单单只可以看到数据的走势,除此之外就没有别的收获,我们甚至都不知道这条折线所表示的意义,因为接下来我们来进行一系列的优化
第一步我们先给图表添加标题以及给X轴、Y轴设置标签,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 添加标题和给Y轴打上标记 plt.ylabel("Closing Price", fontsize=15) ## 收盘价 plt.title("Apple Stock Price", fontsize=18) ## 标题:苹果公司股价
output
现有的这个Y轴代表的是收盘价,要是我们还想再往图表当中添加另外一列的数据,该数据的数值范围和已有的收盘价的数值范围不同,如果放在一起,绘制出来的图表可不好看,如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 第二根折线图 plt.plot(aapl["Volume"])
# Y轴的名称和标记 plt.ylabel("Closing Price", fontsize=15) plt.title("Apple Stock Price", fontsize=18)
output
可以看到我们代表股价的那条蓝线变成了水平的直线,由于它的数值范围和“Volume”这一列当中的数据,数值范围差了不少,因此我还需要一个Y轴,来代表“Volume”这一列数据的走势,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴的标记 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 添加标题和Y轴的名称,有两个Y轴 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
output
上面的代码我们通过twinx()方法再来新建一个Y轴对象,然后对应的数据是Volume这一列当中的数据,而给Y轴标记的方式也从上面的plt.ylabel()变成了ax.set_ylabel()
接下来给绘制好的图表添加图例,不同的折线代表的是不同的数据,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
output
在plt.legend()方法当中的loc参数代表的是图例的位置,2代表的是左上方,具体的大家可以通过下面的链接来查阅
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
有时候我们感觉图表当中的网格线有点碍眼,就可以将其去掉,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
output
这样出来的图表是不是看着顺眼多了呢?!
有时候我们也想在图表当中添加一些文字,可以是注释也可以是一些赞美性的语言,可以通过代码来实现,如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
date_string = datetime.strptime("2021-10-31", "%Y-%m-%d") # 添加文字 ax1.text(
date_string, ## 代表的是添加的文字的位置 170, "Nice plot!", ## 添加的文字的内容 fontsize=18, ## 文字的大小 color="green" ## 颜色 )
output
在上面的图表当中,无论是标题还是注释或者是图例,都是英文的,我们需要往里面添加中文的内容时候,还需要添加下面的代码
plt.rcParams['font.sans-serif'] = ['SimHei']
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("收盘价", fontsize=15)
ax2.set_ylabel("成交量", fontsize=15)
plt.title("苹果公司股价走势", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False) # 添加文字 ax1.text(
date_string, 170, "画的漂亮",
fontsize=18,
color="green" )
output
这样全局的字体都被设置成了“黑体”,文本内容都是用中文来显示
我们还可以给X轴/Y轴添加边框,以及边框的粗细也可以通过代码来进行调整,如下
plt.rcParams["axes.edgecolor"] = "black" plt.rcParams["axes.linewidth"] = 2
同时我们还可以对X轴以及Y轴上面的刻度,它们的字体大小进行设置,代码如下
# tick size ax1.tick_params(axis='both', which='major', labelsize=13)
ax2.tick_params(axis='both', which='major', labelsize=13)
output
出来的图表是不是比一开始的要好很多呢?
接下来给大家介绍一个制作动图的Python库,bar_chart_race,只需要简单的几行代码,就可以制作出随着时间变化的直方图动图,代码如下
import bar_chart_race as bcr import pandas as pd # 生成GIF图像 df = pd.read_csv('covid19_tutorial.csv', index_col=index_col,
parse_dates=parse_dates)
bcr.bar_chart_race(df, 'covid19_tutorial_horiz.gif')
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24