
作者:俊欣
来源:关于数据分析与可视化
一般在Python当中,我们用于绘制图表的模块最基础的可能就是matplotlib了,今天小编分享几个用该模块进行可视化制作的技巧,帮助你绘制出更加高质量的图表。
同时本篇文章的第二部分是用Python来制作可视化动图,让你更加清楚的了解到数据的走势
最开始,我们先导入数据集,并且导入我们需要用到的库
import pandas as pd import matplotlib.pyplot as plt
plt.style.use("seaborn-darkgrid") # 读取数据 aapl = pd.read_csv("AAPL.csv") print(aapl.head())
output
Date Open High ... Close Adj Close Volume 0 2021-9-30 143.660004 144.380005 ... 141.500000 141.293793 88934200 1 2021-10-1 141.899994 142.919998 ... 142.649994 142.442108 94639600 2 2021-10-4 141.759995 142.210007 ... 139.139999 138.937225 98322000 3 2021-10-5 139.490005 142.240005 ... 141.110001 140.904358 80861100 4 2021-10-6 139.470001 142.149994 ... 142.000000 141.793060 83221100
上面的代码我们用到的是“苹果”公司2021年的9月31日到12月31日的股价走势,我们先来简单的画一张折线图,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
output
上面的折线图看着就有点单调和简单,我们就单单只可以看到数据的走势,除此之外就没有别的收获,我们甚至都不知道这条折线所表示的意义,因为接下来我们来进行一系列的优化
第一步我们先给图表添加标题以及给X轴、Y轴设置标签,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 添加标题和给Y轴打上标记 plt.ylabel("Closing Price", fontsize=15) ## 收盘价 plt.title("Apple Stock Price", fontsize=18) ## 标题:苹果公司股价
output
现有的这个Y轴代表的是收盘价,要是我们还想再往图表当中添加另外一列的数据,该数据的数值范围和已有的收盘价的数值范围不同,如果放在一起,绘制出来的图表可不好看,如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 第二根折线图 plt.plot(aapl["Volume"])
# Y轴的名称和标记 plt.ylabel("Closing Price", fontsize=15) plt.title("Apple Stock Price", fontsize=18)
output
可以看到我们代表股价的那条蓝线变成了水平的直线,由于它的数值范围和“Volume”这一列当中的数据,数值范围差了不少,因此我还需要一个Y轴,来代表“Volume”这一列数据的走势,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴的标记 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 添加标题和Y轴的名称,有两个Y轴 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
output
上面的代码我们通过twinx()方法再来新建一个Y轴对象,然后对应的数据是Volume这一列当中的数据,而给Y轴标记的方式也从上面的plt.ylabel()变成了ax.set_ylabel()
接下来给绘制好的图表添加图例,不同的折线代表的是不同的数据,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
output
在plt.legend()方法当中的loc参数代表的是图例的位置,2代表的是左上方,具体的大家可以通过下面的链接来查阅
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
有时候我们感觉图表当中的网格线有点碍眼,就可以将其去掉,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
output
这样出来的图表是不是看着顺眼多了呢?!
有时候我们也想在图表当中添加一些文字,可以是注释也可以是一些赞美性的语言,可以通过代码来实现,如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
date_string = datetime.strptime("2021-10-31", "%Y-%m-%d") # 添加文字 ax1.text(
date_string, ## 代表的是添加的文字的位置 170, "Nice plot!", ## 添加的文字的内容 fontsize=18, ## 文字的大小 color="green" ## 颜色 )
output
在上面的图表当中,无论是标题还是注释或者是图例,都是英文的,我们需要往里面添加中文的内容时候,还需要添加下面的代码
plt.rcParams['font.sans-serif'] = ['SimHei']
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("收盘价", fontsize=15)
ax2.set_ylabel("成交量", fontsize=15)
plt.title("苹果公司股价走势", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False) # 添加文字 ax1.text(
date_string, 170, "画的漂亮",
fontsize=18,
color="green" )
output
这样全局的字体都被设置成了“黑体”,文本内容都是用中文来显示
我们还可以给X轴/Y轴添加边框,以及边框的粗细也可以通过代码来进行调整,如下
plt.rcParams["axes.edgecolor"] = "black" plt.rcParams["axes.linewidth"] = 2
同时我们还可以对X轴以及Y轴上面的刻度,它们的字体大小进行设置,代码如下
# tick size ax1.tick_params(axis='both', which='major', labelsize=13)
ax2.tick_params(axis='both', which='major', labelsize=13)
output
出来的图表是不是比一开始的要好很多呢?
接下来给大家介绍一个制作动图的Python库,bar_chart_race,只需要简单的几行代码,就可以制作出随着时间变化的直方图动图,代码如下
import bar_chart_race as bcr import pandas as pd # 生成GIF图像 df = pd.read_csv('covid19_tutorial.csv', index_col=index_col,
parse_dates=parse_dates)
bcr.bar_chart_race(df, 'covid19_tutorial_horiz.gif')
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08