
CDA数据分析师 出品
作者:Natassha Selvaraj
编译:Mika
导读:由于新冠疫情,一年多前我失业了。在失业后,我自学了数据分析,如今我的收入翻了三倍。
大约18个月前,正值新冠疫情爆发最严重的时期,我失去了工作。之前,我在大学期间做兼职家教。我获得的课时费被用来支付伙食费、汽车加油等费用。
随着疫情防护政策的升级,要求停课停学,居家隔离,我也不能再去学校了,被迫在家自习。
一开始这看起来很糟,但我意识到这能让我有更多的时间。我开始尝试在这段时间里提升自己的技能。
在做了一些研究后,我发现一个很有意思的机器学习在线课程。这是我学完的第一个在线课程。在那之后,我把大部分时间都用于开发项目、学习代码和获得在线认证上。
如今,一年半过去了,凭借我在数据科学和分析领域的知识,我已经有了多个收入来源。下面跟大家简单分享一下。
首先,我入职了一家公司的数据分析岗位,在实习一段时间后,现在已经成功转正了。
起初,我本以为我的工作主要是模型构建。在入职后我发现,模型构建大约只占我工作内容的10%。其余的时间,我和我的团队都在研究如何创建的新解决方案,以解决业务问题。
通常,这些问题甚至不需要用到机器学习来解决。数据解决方案大多可以通过SQL查询完成。
我每天的工作主要包括回答以下问题:
这是对我日常工作的简单概括。但我想强调的是,创建数据解决方案并不以建立模型为起点和终点。
如果你是一位有抱负的数据分析师,我建议你在想从事的行业中获得一些专业领域知识。
我会把自己在数据领域获得的经验写下来。如果我在工作中构建一个项目,我会在Kaggle上找类似的数据集并复制分析,而且围绕它写一个教程。
最开始这只是我的个人爱好,也能提升自己的作品集。但同时,这类文章也让我认识了许多志同道合的数据分析师。这也是我展示自己编写和构建ML模型能力的一种方式。
起初,我从未想过通过自己的写作会得到报酬。然而,在过去的一年里,这项爱好开始为我创造收入。现在,我可以通过创建与数据相关的教程、项目和写自己的经历来获得被动收入。
当我在数据分析社区活跃起来后,我开始收到多个项目的邀约,也接了一些数据分析的私活。我为客户建立了机器学习模型,创建竞争对手分析报告,并撰写数据科学文章。
当我最初想到自由职业时,我以为必须在某个在线平台上竞标项目。然而,我所有的客户都是在阅读了我的文章或看了我的数据分析项目后主动与我联系的。
几个月前,我构建了一个聚类算法,并在网上发布了关于它的教程。第二天,就有人主动联系我,问我是否有兴趣为他们的客户构建聚类模型。
接手这些项目让我掌握了很多我在日常工作领域以外的技能。
在我的公司,我处理的数据通常以某种预处理的格式提供,我用SQL和Python对数据进行查询和处理。
而接私活时,客户的数据的格式非常不同。大部分数据都没有经过处理或结构化,我要花很多时间来弄清数据集之间的关系并进行理解。
我还需要收集外部数据来进行分析,这通常包括爬取第三方网站和使用开源工具。这些工程中让我接触到了目前日常工作外的知识,而且我能够在从事的每一个项目中学到新的东西。
我是如何做到的
之前提到,我参加了一个数据科学在线课程。其实在刚上完课程后,我感到很失落和茫然。之后我又花了大约一个月的时间用Scikit Learn学习不同的算法和训练模型。
当时我也不知道今后该怎么发展。
之后我看到一些文章,当中分享了别人是如何在没有相关学位或任何专业资格的情况下成功地获得了数据分析工作。我意识到领域知识和借助现有数据解决问题的重要性。
对我来说,建立最精确的模型或理解模型背后的基本算法并不是必须的。
我意识到,最重要的技能是利用数据解决问题的能力,而不是局限于机器学习的算法。
之后我又我参加了商业分析和ML工程的课程。这次我花在学习代码上的时间比花在理论上的时间多,我还花时间学习了SQL和数据处理。
随后,我通过网络爬取,从在线网站收集数据。我用这些数据解决问题,并用它构建了简单的机器学习web应用。
通过这种方式,我慢慢获得了成为端到端数据科学家所需的技能。
在公司的数据分析团队中,如果有任何超出我们日常工作范围的项目,比如需要收集外部数据或新算法的项目,我通常会被分配到该项目中。
如果你对数据分析行业感兴趣,或者已经在从事数据分析工作,现在网上有很多资源可供使用。事实上,这些资源太多了,有时你会不知道该如何选择。
虽然知道构建和训练模型的基本原理是很重要的,但大多数现有工作都要求你超越这一点。真正的需求在于,你能够借助现有数据去解决实际问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15