
作者:俊欣
来源:关于数据分析与可视化
随着各行各业都在进行数字化转型,数据方面的人才也成为了各家企业招聘的重点对象,不同数据类型的岗位提供的薪资待遇又是如何的?哪个城市最需要数据方面的人才、未来的发展前景与钱途又是怎么样的?今天小编抓取了某互联网招聘平台上面的招聘信息,来为大家分析分析。我们大致会讲
我们用Python当中的requests模块来发送与接收请求,然后用BeautifulSoup模块也解析返回的数据,代码如下
@retry(stop=stop_after_attempt(7)) def make_requests(url):
response = requests.get(url=url, headers=headers)
response_1 = BeautifulSoup(response.text, "lxml") return response_1
解析数据的代码如下
def process_data(index, job_title, response_text):
response_2 = response_text.select("div.list__YibNq") for resp in response_2[0]: if resp.select("div.p-top__1F7CL a"):
job_titles = resp.select("div.p-top__1F7CL a")[0].get_text() else:
job_titles = "" if resp.select("span.money__3Lkgq"):
payments = resp.select("span.money__3Lkgq")[0].get_text() else:
payments = "" .........
然后最后将收集到的数据导出到excel当中,代码如下
df = pd.DataFrame(
{"职位名称": job_titles_list, "薪资待遇": payments_list, "工作年限": work_years_list, "公司名称": company_name_list, "所处行业": industry_list, "岗位简介": job_title_description_list}) path = "job_files/" if not os.path.exists(path): os.makedirs(path)
df.to_excel("./job_files/{}_{}.xlsx".format(job_title, index), index = False)
小编这次所抓取的岗位分别有“数据分析师”、“数据挖掘工程师”、“数据产品经理”、“大数据开发工程师”以及“数据运营助理”等等,接下来我们就针对所收集到的数据进行清洗与进一步的处理吧
我们用到的是Pandas模块,首先先导入所有收集到的数据
import pandas as pd import os
df_all = pd.DataFrame(columns=["职位名称", "薪资待遇", "工作年限", "公司名称", "所处行业", "岗位简介"]) for file in os.listdir("./job_files"):
df = pd.read_excel("./job_files/" + file)
df_all = df_all.append(df, ignore_index=True)
我们来看一下最终的数据集长什么样子
print(df_all.info())
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 2238 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2238 non-null object 1 薪资待遇 2238 non-null object 2 工作年限 2238 non-null object 3 公司名称 2238 non-null object 4 所处行业 2234 non-null object 5 岗位简介 2238 non-null object dtypes: object(6)
memory usage: 105.0+ KB
数据集当中或许存在重复的内容,我们用drop_duplicates()方法来进行重复项的去除
df_all_1 = df_all.drop_duplicates()
df_all_1.info()
output
<class 'pandas.core.frame.DataFrame'> Int64Index: 2207 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2207 non-null object 1 薪资待遇 2207 non-null object 2 工作年限 2207 non-null object 3 公司名称 2207 non-null object 4 所处行业 2203 non-null object 5 岗位简介 2207 non-null object dtypes: object(6)
memory usage: 120.7+ KB
df_all_1 = df_all_1.dropna(axis = 0, how = "any")
df_all_1.info()
output
<class 'pandas.core.frame.DataFrame'> Int64Index: 2203 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2203 non-null object 1 薪资待遇 2203 non-null object 2 工作年限 2203 non-null object 3 公司名称 2203 non-null object 4 所处行业 2203 non-null object 5 岗位简介 2203 non-null object dtypes: object(6)
memory usage: 120.5+ KB
接下来为了方便对薪资数据进行统计分析,我们对此也需要进行相对应的处理
df_all_1["薪资待遇"] = df_all_1["薪资待遇"].str.replace("k", "000")
我们先来看薪资上面的差距,根据不同的职位名称来看,例如我们来看“数据产品经理”这个岗位
df_all_1[df_all_1["职位名称"].str.contains("产品经理")]['薪资待遇'].value_counts().head(5)
output
20000-40000 66 15000-30000 48 15000-25000 46 20000-30000 27 25000-50000 26 Name: 薪资待遇, dtype: int64
较多的是集中在20K-40K这个范围当中,具体我们可以通过下面这个可视化的结果来看
我们可以发现的是整体的市场中“数据产品经理”这个岗位的整体待遇是相对更好一点的,其次便是“数据挖掘工程师”这个岗位,薪资一般也比较容易达到20K-40K之间的区间
接下来我们来看一下哪些城市对数据方面的人才需求是最多的,
df_all_1["城市分布"] = df_all_1["职位名称"].apply(lambda x: x.split("[")[1].split("·")[0])
df_all_1["城市分布"].value_counts().head(10)
output
北京 702 上海 446 深圳 404 杭州 194 广州 190 成都 68 武汉 57 西安 23 南京 18 苏州 15 Name: 城市分布, dtype: int64
可以看到的是对于数据方面的人才需求最旺盛的仍然是北京,上海排在第二,与此同时呢,杭州在这方面的需求上面已经超过了广州,位列第四,同时在前十名当中成都、南京以及武汉与西安都纷纷上榜
接下来我们来看一下哪个行业所需要的数据方面的人才最多,
df_all_1["行业"] = df_all_1["所处行业"].apply(lambda x: x.split("|")[0].split("/")[0])
df_all_1["行业"].value_counts().head(10)
output
数据服务 175 内容资讯,短视频 155 软件服务 141 科技金融 114 电商平台 84 IT技术服务 68 企业服务 61 游戏 55 专业服务 52 消费生活 52 Name: 行业, dtype: int64
从上面的结果中看到,除了“数据服务”行业之外,还有“内容咨询、短视频”领域、“软件服务”、“科技金融”、“电商平台”、“IT技术服务”等领域对于数据方面的人才都有着相当旺盛的需求
我们来看一下各家公司对于数据方面的人才,在学历上又有何种要求呢?
df_all_1["学历要求"] = df_all_1["工作年限"].apply(lambda x: x.split("/")[-1])
df_all_1["学历要求"].value_counts()
output
本科 1922 硕士 119 不限 77 大专 73 博士 12 Name: 学历要求, dtype: int64
一般来说仅仅是“本科”的学历就可以了,当然还有少数的公司对于学历的要求是局限在硕士之上
各家公司为了吸引越来越多的人才前往加入公司,也打出了各色各样的标语,小编做了汇总,并且做成词云图,首先我们用jieba模块对文本数据进行分词
word_num = jieba.lcut(text, cut_all = False)
rule = re.compile(r"^[u4e00-u9fa5]+$")
word_num_selected = [word for word in word_num if word not in stop_words and re.search(rule, word) and len(word) >= 2]
接着我们使用stylecloud模块来进行词云图的绘制
stylecloud.gen_stylecloud(text=" ".join(review_list), max_words=100, collocations=False,
font_path="KAITI.ttf", icon_name="fab fa-apple", size=653,
output_name="4.png")
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26