
作者:俊欣
来源:关于数据分析与可视化
随着各行各业都在进行数字化转型,数据方面的人才也成为了各家企业招聘的重点对象,不同数据类型的岗位提供的薪资待遇又是如何的?哪个城市最需要数据方面的人才、未来的发展前景与钱途又是怎么样的?今天小编抓取了某互联网招聘平台上面的招聘信息,来为大家分析分析。我们大致会讲
我们用Python当中的requests模块来发送与接收请求,然后用BeautifulSoup模块也解析返回的数据,代码如下
@retry(stop=stop_after_attempt(7)) def make_requests(url):
response = requests.get(url=url, headers=headers)
response_1 = BeautifulSoup(response.text, "lxml") return response_1
解析数据的代码如下
def process_data(index, job_title, response_text):
response_2 = response_text.select("div.list__YibNq") for resp in response_2[0]: if resp.select("div.p-top__1F7CL a"):
job_titles = resp.select("div.p-top__1F7CL a")[0].get_text() else:
job_titles = "" if resp.select("span.money__3Lkgq"):
payments = resp.select("span.money__3Lkgq")[0].get_text() else:
payments = "" .........
然后最后将收集到的数据导出到excel当中,代码如下
df = pd.DataFrame(
{"职位名称": job_titles_list, "薪资待遇": payments_list, "工作年限": work_years_list, "公司名称": company_name_list, "所处行业": industry_list, "岗位简介": job_title_description_list}) path = "job_files/" if not os.path.exists(path): os.makedirs(path)
df.to_excel("./job_files/{}_{}.xlsx".format(job_title, index), index = False)
小编这次所抓取的岗位分别有“数据分析师”、“数据挖掘工程师”、“数据产品经理”、“大数据开发工程师”以及“数据运营助理”等等,接下来我们就针对所收集到的数据进行清洗与进一步的处理吧
我们用到的是Pandas模块,首先先导入所有收集到的数据
import pandas as pd import os
df_all = pd.DataFrame(columns=["职位名称", "薪资待遇", "工作年限", "公司名称", "所处行业", "岗位简介"]) for file in os.listdir("./job_files"):
df = pd.read_excel("./job_files/" + file)
df_all = df_all.append(df, ignore_index=True)
我们来看一下最终的数据集长什么样子
print(df_all.info())
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 2238 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2238 non-null object 1 薪资待遇 2238 non-null object 2 工作年限 2238 non-null object 3 公司名称 2238 non-null object 4 所处行业 2234 non-null object 5 岗位简介 2238 non-null object dtypes: object(6)
memory usage: 105.0+ KB
数据集当中或许存在重复的内容,我们用drop_duplicates()方法来进行重复项的去除
df_all_1 = df_all.drop_duplicates()
df_all_1.info()
output
<class 'pandas.core.frame.DataFrame'> Int64Index: 2207 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2207 non-null object 1 薪资待遇 2207 non-null object 2 工作年限 2207 non-null object 3 公司名称 2207 non-null object 4 所处行业 2203 non-null object 5 岗位简介 2207 non-null object dtypes: object(6)
memory usage: 120.7+ KB
df_all_1 = df_all_1.dropna(axis = 0, how = "any")
df_all_1.info()
output
<class 'pandas.core.frame.DataFrame'> Int64Index: 2203 entries, 0 to 2237 Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 职位名称 2203 non-null object 1 薪资待遇 2203 non-null object 2 工作年限 2203 non-null object 3 公司名称 2203 non-null object 4 所处行业 2203 non-null object 5 岗位简介 2203 non-null object dtypes: object(6)
memory usage: 120.5+ KB
接下来为了方便对薪资数据进行统计分析,我们对此也需要进行相对应的处理
df_all_1["薪资待遇"] = df_all_1["薪资待遇"].str.replace("k", "000")
我们先来看薪资上面的差距,根据不同的职位名称来看,例如我们来看“数据产品经理”这个岗位
df_all_1[df_all_1["职位名称"].str.contains("产品经理")]['薪资待遇'].value_counts().head(5)
output
20000-40000 66 15000-30000 48 15000-25000 46 20000-30000 27 25000-50000 26 Name: 薪资待遇, dtype: int64
较多的是集中在20K-40K这个范围当中,具体我们可以通过下面这个可视化的结果来看
我们可以发现的是整体的市场中“数据产品经理”这个岗位的整体待遇是相对更好一点的,其次便是“数据挖掘工程师”这个岗位,薪资一般也比较容易达到20K-40K之间的区间
接下来我们来看一下哪些城市对数据方面的人才需求是最多的,
df_all_1["城市分布"] = df_all_1["职位名称"].apply(lambda x: x.split("[")[1].split("·")[0])
df_all_1["城市分布"].value_counts().head(10)
output
北京 702 上海 446 深圳 404 杭州 194 广州 190 成都 68 武汉 57 西安 23 南京 18 苏州 15 Name: 城市分布, dtype: int64
可以看到的是对于数据方面的人才需求最旺盛的仍然是北京,上海排在第二,与此同时呢,杭州在这方面的需求上面已经超过了广州,位列第四,同时在前十名当中成都、南京以及武汉与西安都纷纷上榜
接下来我们来看一下哪个行业所需要的数据方面的人才最多,
df_all_1["行业"] = df_all_1["所处行业"].apply(lambda x: x.split("|")[0].split("/")[0])
df_all_1["行业"].value_counts().head(10)
output
数据服务 175 内容资讯,短视频 155 软件服务 141 科技金融 114 电商平台 84 IT技术服务 68 企业服务 61 游戏 55 专业服务 52 消费生活 52 Name: 行业, dtype: int64
从上面的结果中看到,除了“数据服务”行业之外,还有“内容咨询、短视频”领域、“软件服务”、“科技金融”、“电商平台”、“IT技术服务”等领域对于数据方面的人才都有着相当旺盛的需求
我们来看一下各家公司对于数据方面的人才,在学历上又有何种要求呢?
df_all_1["学历要求"] = df_all_1["工作年限"].apply(lambda x: x.split("/")[-1])
df_all_1["学历要求"].value_counts()
output
本科 1922 硕士 119 不限 77 大专 73 博士 12 Name: 学历要求, dtype: int64
一般来说仅仅是“本科”的学历就可以了,当然还有少数的公司对于学历的要求是局限在硕士之上
各家公司为了吸引越来越多的人才前往加入公司,也打出了各色各样的标语,小编做了汇总,并且做成词云图,首先我们用jieba模块对文本数据进行分词
word_num = jieba.lcut(text, cut_all = False)
rule = re.compile(r"^[u4e00-u9fa5]+$")
word_num_selected = [word for word in word_num if word not in stop_words and re.search(rule, word) and len(word) >= 2]
接着我们使用stylecloud模块来进行词云图的绘制
stylecloud.gen_stylecloud(text=" ".join(review_list), max_words=100, collocations=False,
font_path="KAITI.ttf", icon_name="fab fa-apple", size=653,
output_name="4.png")
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23