作者:闲欢
来源:Python 技术
作为程序员,我们经常会遇到比较耗时的操作,这个时候我们大多数人会无助地等待程序执行完成,有些人会趁机摸一下鱼,以便渡过这个无聊看起来又有点未知的时间,我就是这样做的。
但是,我们也可以选择另一种方式——用一个炫酷的进度条,来观察处理进度,也可以及时了解程序运行的情况,做到心中有数。
今天就给大家介绍 Python 的一个库—— tqdm ,它就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows、Linux、mac等系统,支持循环处理、多进程、递归处理、还可以结合linux的命令来查看处理情况,等进度展示。
我们常见的安装方式是直接 pip 安装:
pip install tqdm
但是我用这种方式安装的时候报错:
看报错的意思是这个 pypi.org 不是可信网站,于是我加上了:
pip install tqdm --trusted-host pypi.org
结果还是这个报错。
这有点无语了。我接着尝试使用豆瓣的源来进行安装:
pip install -i https://pypi.douban.com/simple tqdm
还是一样的报错。
但是我浏览器访问这个网站没问题:https://pypi.org/project/tqdm/
既然这样,我就把文件下载下来再安装吧。
下载下来之后,我将 whl 文件放在我的项目目录,然后使用命令行安装:
pip install --trusted-host pypi.org tqdm-4.62.3-py2.py3-none-any.whl
这回安装没报错。我再用命令检查一下安装是否成功:
pip show tqdm
命令行成功显示信息:
Name: tqdm Version: 4.62.3 Summary: Fast, Extensible Progress Meter Home-page: https://tqdm.github.io Author: None Author-email: None License: MPLv2.0, MIT Licences Location: c:pworkspacemypyvenvlibsite-packages Requires: colorama Required-by:
折腾了半天,终于安装成功了!
本文的示例都是在 jupyter notebook 环境下运行的,不同环境运行的效果会有差别。
我们进入 tqdm 的源码,可以找到 __init__ 方法:
def __init__(self, iterable=None, desc=None, total=None, leave=True, file=None,
ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None,
ascii=None, disable=False, unit='it', unit_scale=False,
dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0,
position=None, postfix=None, unit_divisor=1000, write_bytes=None,
lock_args=None, nrows=None, colour=None, delay=0, gui=False,
**kwargs):
从中我们可以看到 tqdm 支持很多参数,下面列一些常见的参数:
直接将可迭代对象传入作为参数,我们来看一下例子:
from tqdm import tqdm from time import sleep for char in tqdm(['h', 'e', 'l', 'l', 'o']):
sleep(0.25) for i in tqdm(range(100)):
sleep(0.05)
实现的进度条效果如下:
这里面的 tqdm(range()) 我们也可以用 tqdm 提供的 trange() 来代替,可以简化代码。
from tqdm.notebook import trange for i in trange(100):
sleep(0.05)
实现的进度条效果如下:
我们还可以为进度条添加描述:
pbar = tqdm(range(5)) for char in pbar:
pbar.set_description("Progress %d" %char) sleep(1)
实现的进度条效果如下:
接下来,我要改变一下进度条的颜色:
我们可以使用 with 语句来手动控制进度条。
with tqdm(total=100) as pbar: for i in range(1, 5): sleep(1) # 更新进度 pbar.update(10*i)
这里我设置进度条的更新的间隔,设置总数为 total=100,然后分四次,使得进度条按 10%,20%,30%,40%的间隔来更新。
实现的进度条效果如下:
接下来, 我要改变一下进度条的颜色:
with tqdm(total=100, colour='yellow') as pbar: for i in range(1, 5): sleep(1) # 更新进度 pbar.update(10*i)
我把进度条改为了黄色。
接下来,我们来个嵌套进度条玩玩。
for i in trange(3, desc='outer loop'): for i in trange(100, desc='inner loop', leave=False): sleep(0.01)
这里我用两层 for 循环实现了嵌套,并且将内层的 参数 leave 设置为 False ,意思是内层的进度条每执行一次都会消失。
我们来看看最终运行的效果:
这个进度条库的使用方法是不是很简单,几行代码就能为我们的程序增色不少。心动不如行动,赶快用起来吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03