作者:豆豆
来源:Python 技术
众所周知,Pytnon 非常擅长处理数据,尤其是后期数据的清洗工作。今天派森酱就给大家介绍一款处理数据的神器 Pipe。
简言之,Pipe 是 Python 的一个三方库。
通过 Pipe 我们可以将一个函数的处理结果传递给另外一个函数,这意味着你的代码会非常简洁。
要使用 Pipe 需要提前安装,直接使用 pip 安装即可。
pip install pipe
和 filter 类似,pipe 中的 where 操作可以过滤可迭代对象中的元素。
In [5]: numbers = [0, 1, 2, 3, 4, 5] In [6]: list(numbers | where(lambda x: x % 2 == 0)) Out[6]: [0, 2, 4]
类似 map,select 操作可以将函数作用于可迭代对象中的每个元素。下面的例子中我们将列表中的元素都扩大 2 倍。
In [8]: list(numbers | select(lambda x: x * 2)) Out[8]: [0, 2, 4, 6, 8, 10]
当然,还可以将多种操作合并在一起来玩。
下面的例子就是将列表中的偶数挑选出来并扩大 2 倍,和 filter 与 map 不同的是,pipe 可以将多个操作连接起来,就像水管套水管一样,所以我想管道这个名字也是很接地气了。
In [10]: list(numbers ...: | where(lambda x: x % 2 == 0) ...: | select(lambda x: x * 2) ...: ) ...: Out[10]: [0, 4, 8]
操作嵌套列表时非常痛苦,值得高兴的是 pipe 给出了很友好的接口,只需要 chain 一下即可。
In [11]: list([[1, 2], [3, 4], [5]] | chain) Out[11]: [1, 2, 3, 4, 5] In [30]: list((1, 2, 3) | chain_with([4, 5], [6])) Out[30]: [1, 2, 3, 4, 5, 6] In [31]: list((1, 2, 3) | chain_with([4, 5], [6,[7]])) Out[31]: [1, 2, 3, 4, 5, 6, [7]]
如你所见,chain 只可以拆开一层,如果要拆开多层嵌套的话,不要慌,traverse 轻松搞定。
In [12]: list([[1, 2], [[[3], [[4]]], [5]]] | traverse) Out[12]: [1, 2, 3, 4, 5]
结合 select 一起,获取字典中的某个字段属性集合。
In [32]: fruits = [
...: {"name": "apple", "price": [2, 5]},
...: {"name": "orange", "price": 4},
...: {"name": "grape", "price": 5},
...: ]
In [33]: list(fruits
...: | select(lambda fruit: fruit["price"])
...: | traverse)
...:
Out[33]: [2, 5, 4, 5]
对列表中的元素进行分组是必不可少的,在 pipe 中可以使用 groupby 来完成。
In [26]: list(numbers ...: | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd') ...: | select(lambda x: {x[0]: list(x[1])}) ...: ) ...: Out[26]: [{'Even': [0, 2, 4]}, {'Odd': [1, 3, 5]}]
同样,还可以在 select 中添加 where 过滤条件。
In [27]: list(numbers
...: | groupby(lambda x: 'Even' if x % 2 == 0 else 'Odd')
...: | select(lambda x: {x[0]: list(x[1] | where(lambda x: x > 2))})
...: )
...:
Out[27]: [{'Even': [4]}, {'Odd': [3, 5]}]
数据处理中时常会用到行列互相转换,尤其是在用 DataFrame 时,使用 pipe 一行代码搞定行列转换。
In [24]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | transpose Out[24]: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
对列表去重也是一项常用的操作,在 pipe 中使用 dedup 来对列表进行去重。
In [28]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | dedup) Out[28]: [1, 2, 3]
与 dedup 不同的是,uniq 只会对连续的重复元素保留一个,非连续重复元素则不过滤。
In [29]: list([1, 1, 2, 2, 3, 3, 1, 2, 3] | uniq) Out[29]: [1, 2, 3, 1, 2, 3]
今天派森酱给大家介绍了一个处理数据的神器,使用管道可以让繁琐的操作浓缩在几行甚至一行代码搞定,提高可读性的同时还提升了代码的整洁程度,美滋滋~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03